234 resultados para coexpression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1) or beta(3) isoforms, beta(2a) and beta(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal beta(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase"), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2) expression. Additional evidence for the cause-effect relationship between beta(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible beta(2) cardiac overexpression. Here in non-failing hearts induction of beta(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of beta(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of dysplasia in inflammatory bowel disease represents a major challenge for both clinicians and pathologists. Clear diagnosis of dysplasia in inflammatory bowel disease is sometimes not possible with biopsies remaining "indefinite for dysplasia." Recent studies have identified molecular alterations in colitis-associated cancers, including increased protein levels of alpha-methylacyl coenzyme A racemase, p53, p16 and bcl-2. In order to analyze the potential diagnostic use of these parameters in biopsies from inflammatory bowel disease, a tissue microarray was manufactured from colons of 54 patients with inflammatory bowel disease composed of 622 samples with normal mucosa, 78 samples with inflammatory activity, 6 samples with low-grade dysplasia, 12 samples with high-grade dysplasia, and 66 samples with carcinoma. In addition, 69 colonoscopic biopsies from 36 patients with inflammatory bowel disease (28 low-grade dysplasia, 8 high-grade dysplasia, and 33 indefinite for dysplasia) were included in this study. Immunohistochemistry for alpha-methylacyl coenzyme A racemase, p53, p16 and bcl-2 was performed on both tissue microarray and biopsies. p53 and alpha-methylacyl coenzyme A racemase showed the most discriminating results, being positive in most cancers (77.3% and 80.3%) and dysplasias (94.4% and 94.4%) but only rarely in nonneoplastic epithelium (1.6% and 9.4%; P < .001). Through combining the best discriminators, p53 and alpha-methylacyl coenzyme A racemase, a stronger distinction between neoplastic tissues was possible. Of all neoplastic lesions, 75.8% showed a coexpression of alpha-methylacyl coenzyme A racemase and p53, whereas this was found in only 4 of 700 nonneoplastic samples (0.6%). alpha-methylacyl coenzyme A racemase/p53 coexpression was also found in 10 of 33 indefinite for dysplasia biopsies (30.3 %), suggesting a possible neoplastic transformation in these cases. Progression to dysplasia or carcinoma was observed in 3 of 10 p53/alpha-methylacyl coenzyme A racemase-positive, indefinite-for-dysplasia cases, including 1 of 7 cases without and 2 of 3 cases with p53 mutation. It is concluded that combined alpha-methylacyl coenzyme A racemase/p53 analysis may represent a helpful tool to confirm dysplasia in inflammatory bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Navs) are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V ½ of steady-state activation and inactivation and increased Nav1.7-mediated I Na density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at ~250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa) was observed. This higher band shifted to an intermediate band (~260 kDa) when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sox9 is a master transcription factor in chondrocyte differentiation. Several lines of evidence suggest that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in chondrocyte differentiation. In the present study, we examined the roles of p38 in the regulation of SOX9 activity and chondrogenesis. ^ COS7 cells were transfected with a SOX9 expression vector and 4x48-p89, a luciferase construction harboring four tandem copies of a SOX9-dependent 48-bp enhancer in Col2a1. Coexpression of MKK6EE, a constitutively active mutant of MKK6, a MAPKK that specifically activates p38, further increased the activity of the SOX9-dependent 48-bp enhancer about 5-fold, and SOX9 protein levels were not increased under these conditions. This increase in enhancer activity was not observed in a mutant enhancer construct harboring mutations that abolish SOX9 binding. These data strongly suggested that activation of the p38 pathway results in increased activity of SOX9. In addition, the increase of the activity of the SOX9-dependent 48-bp enhancer by MKK6EE was also observed in primary chondrocytes, and this increase was abolished by coexpression of a p38 phosphatase, MKP5, and p38 specific inhibitors. Furthermore, treatment of primary chondrocytes with p38 inhibitors decreased the expression of Col2a1, a downstream target of Sox9, without affecting Sox9 RNA levels, further supporting the hypothesis that p38 plays a role in regulating Sox9 activity in chondrocytes. ^ To further study the role of the p38 MAPK pathway in chondrogenesis, we generated transgenic mice that express MKK6EE in chondrocytes under the control of the Col2a1 promoter/intron regulatory sequences. These mice showed a dwarf phenotype characterized by reduced chondrocyte proliferation and a delay in the formation of primary and secondary ossification centers. Histological analysis using in situ hybridization showed reduced expression of Indian hedgehog, PTH/PTHrP receptor, cyclin D1 and increased expression of p21. In addition, consistent with the notion that Sox9 activity was increased in these mice, transgenic mice that express MKK6EE in chondrocytes showed phenotypes similar to those of mice that overexpress SOX9 in chondrocytes. Therefore, our study provides in vivo evidence for the role of p38 in chondrocyte differentiation and suggests that Sox9 is a downstream target of the p38 MAPK pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gene expression atlas is an essential resource to quantify and understand the multiscale processes of embryogenesis in time and space. The automated reconstruction of a prototypic 4D atlas for vertebrate early embryos, using multicolor fluorescence in situ hybridization with nuclear counterstain, requires dedicated computational strategies. To this goal, we designed an original methodological framework implemented in a software tool called Match-IT. With only minimal human supervision, our system is able to gather gene expression patterns observed in different analyzed embryos with phenotypic variability and map them onto a series of common 3D templates over time, creating a 4D atlas. This framework was used to construct an atlas composed of 6 gene expression templates from a cohort of zebrafish early embryos spanning 6 developmental stages from 4 to 6.3 hpf (hours post fertilization). They included 53 specimens, 181,415 detected cell nuclei and the segmentation of 98 gene expression patterns observed in 3D for 9 different genes. In addition, an interactive visualization software, Atlas-IT, was developed to inspect, supervise and analyze the atlas. Match-IT and Atlas-IT, including user manuals, representative datasets and video tutorials, are publicly and freely available online. We also propose computational methods and tools for the quantitative assessment of the gene expression templates at the cellular scale, with the identification, visualization and analysis of coexpression patterns, synexpression groups and their dynamics through developmental stages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane β subunit (β2) that yields inactivating MaxiK currents on coexpression with the pore-forming α subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the β2 subunit abolished inactivation of the α subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle β1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the β2 subunit causes inactivation of the MaxiK channel α subunit by occluding its K+-conducting pore resembling the inactivation caused by the “ball” peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different β subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adipose differentiation is an important part of the energy homeostasis system of higher organisms. Recent data have suggested that this process is controlled by an interplay of transcription factors including PPARγ, the C/EBPs, and ADD1/SREBP1. Although these factors interact functionally to initiate the program of differentiation, there are no data concerning specific mechanisms of interaction. We show here that the expression of ADD1/SREBP1 specifically increases the activity of PPARγ but not other isoforms, PPARα, or PPARδ. This activation occurs through the ligand-binding domain of PPARγ when it is fused to the DNA-binding domain of Gal4. The stimulation of PPARγ by ADD1/SREBP1 does not require coexpression in the same cells; supernatants from cultures that express ADD1/SREBP1 augment the transcriptional activity of PPARγ. Finally, we demonstrate directly that cells expressing ADD1/SREBP1 produce and secrete lipid molecule(s) that bind directly to PPARγ, displacing the binding of radioactive thiazolidinedione ligands. These data establish that ADD1/SREBP1 can control the production of endogenous ligand(s) for PPARγ and suggest a mechanism for coordinating the actions of these adipogenic factors.