915 resultados para cocaine dependence
Resumo:
N.q.r. in sodium chloroacetate has been investigated at temperatures from 77 K to room temperature (c.300 K). A single line has been observed throughout this temperature range. Torsional frequencies of the molecule have been calculated in the above temperature range from Bayer's theory. Also the temperature coefficient of the torsional frequencies has been calculated by Brown's method.
Resumo:
Temperature dependence of chlorine nuclear quadrupole resonance in 2-chloro 5-nitrobenzoic acid and 4-chloro 3-nitrobenzoic acid has been investigated in the region 77° K to room temperature. No phase transition has been observed. The results are analysed to obtain the torsional frequencies and their temperature dependence. A nonlinear temperature dependence is obtained for the torsional frequencies.
Resumo:
It has been hypothesized that abuse of supra-therapeutic doses of anabolic androgenic steroids (AASs) can lead to dependence and function as a gateway to abuse of other drugs. This is supported by behavioral studies on animal models and psychiatric evaluations of human subjects, although their neurochemical effects remain largely unknown. A large body of evidence suggests that the ability of the drugs to induce a strong elevation of extracellular dopamine (DA) levels in the nucleus accumbens (NAc), especially, plays a crucial role in their reinforcing effects. -- This study had four main aims. The first was to explore the effects of nandrolone decanoate on dopaminergic and serotonergic activities in the brains of rats. The second aim was to assess whether or not nandrolone pre-exposure modulates the acute neurochemical and behavioral effects of psychostimulant drugs in experimental animals. The third was to investigate if the AAS-pre-treatment induced changes in brain reward circuitry are reversible. And the fourth main goal was to evaluate the role of androgen and estrogen receptors in the modulation of the dopaminergic and serotonergic effects of acute injections of stimulant drugs by sub-chronic nandrolone treatment. The results showed that nandrolone decanoate at doses, high enough to induce erythropoiesis, significantly increased the levels of DOPAC and 5-HT in the cerebral cortex. Co-administration of AAS and psychostimulant drugs showed that the increase in extracellular DA and 5-HT concentration evoked by amphetamine, MDMA and cocaine in the NAc was attenuated dose-dependently by pretreatment with nandrolone. Nandrolone pre-exposure also attenuated the ability of stimulants to cause increased stereotyped behavior and locomotor activity. Despite the significant decrease in nandrolone concentration in blood, the attenuation of cocaine’s effects remained unchanged after a fairly long period without nandrolone, suggesting that nandrolone effects could be long lasting. Blockade of androgen receptors with flutamide abolished the attenuating effect of nandrolone pretreatment on amphetamine-induced elevation of extracellular DA concentration. --- In conclusion, the results show that AAS-pretreatment is able to inhibit the reward-related neurochemical and behavioral effects of amphetamine, MDMA and cocaine in experimental animals. Furthermore, it seems that these effects could be long lasting and it appears that the ability of nandrolone to modulate reward-related effects of stimulants is dependent on activation of androgen receptors.
Resumo:
Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.
Resumo:
Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.
Resumo:
Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.
Resumo:
Peptide NH chemical shifts and their temperature dependences have been monitored as a function of concentration for the decapeptide, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aib-OMe in CDCl3 (0.001-0.06M) and (CD3)2SO (0.001-0.03M). The chemical shifts and temperature coefficients for all nine NH groups show no significant concentration dependence in (CD3)2SO. Seven NH groups yield low values of temperature coefficients over the entire range, while one yields an intermediate value. In CDCl3, the Aib(1) NH group shows a large concentration dependence of both chemical shift and temperature coefficient, in contrast to the other eight NH groups. The data suggest that in (CD3)2SO, the peptide adopts a 310 helical conformation and is monomeric over the entire concentration range. In CDCl3, the 310 helical peptide associates at a concentration of 0.01M, with the Aib(1) NH involved in an intermolecular hydrogen bond. Association does not disrupt the intramolecular hydrogen-bonding pattern in the decapeptide.
Resumo:
Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.
Resumo:
In order to understand self-diffusion (D) of a charged, flexible, and porous nanoscopic molecule in water, we carry out very long, fully atomistic molecular dynamics simulation of PAMAM dendrimer up to eight generations in explicit salt water under varying pH. We find that while the radius of gyration (R-g) varies as N-1/3, the self-diffusion constant (D) scales, surprisingly, as N-alpha, with alpha=0.39 at high pH and 0.5 at neutral pH, indicating a dramatic breakdown of Stokes-Einstein relation for diffusion of charged nanoscopic molecules. The variation in D as a function of radius of gyration demonstrates the importance of treating water and ions explicitly in the diffusion process of a flexible nanoscopic molecule. In agreement with recent experiments, the self-diffusion constant increases with pH, revealing the importance of dielectric friction in the diffusion process. The shape of a dendrimer is found to fluctuate on a nanosecond time scale. We argue that this flexibility (and also the porosity) of the dendrimer may play an important role in determining the mean square displacement of the dendrimer and the breakdown of the Stokes-Einstein relation between diffusion constant and the radius.
Resumo:
Background Stress, craving, and depressed mood have all been implicated in alcohol use treatment lapses. Few studies have examined all 3 factors. Progress has been limited because of difficulties with craving assessment. The Alcohol Craving Experience Questionnaire (ACE) is a new measure of alcohol craving. It is both psychometrically sound and conceptually rigorous. This prospective study examines a stress–treatment response model that incorporates mediation by craving and moderation by depressed mood and pharmacotherapy. Methods Five hundred and thirty-nine consecutively treated alcohol-dependent patients voluntarily participated in an abstinence-based 12-week cognitive-behavioral therapy (CBT) program at a hospital alcohol and drug outpatient clinic. Measures of stress, craving, depressed mood, and alcohol dependence severity were administered prior to treatment. Treatment lapse and treatment dropout were assessed over the 12-week program duration. Results Patients reporting greater stress experienced stronger and more frequent cravings. Stronger alcohol craving predicted lapse, after controlling for dependence severity, stress, depression, and pharmacotherapy. Alcohol craving mediated stress to predict lapse. Depressed mood and anticraving medication were not significant moderators. Conclusions Among treatment seeking, alcohol-dependent patients, craving mediated the relationship between stress and lapse. The effect was not moderated by depressed mood or anticraving medication.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A recent, major, puzzle in the core-level photoemission spectra of doped manganites is the observation of a 1–2 eV wide shoulder with intensity varying with temperature T as the square of the magnetization over a T scale of order 200 K, an order of magnitude less than electronic energies. This is addressed and resolved here, by extending a recently proposed two-fluid polaron–mobile electron model for these systems to include core-hole effects. The position of the shoulder is found to be determined by Coulomb and Jahn-Teller energies, while its spectral weight is determined by the mobile electron energetics which is strongly T and doping dependent, due to annealed disorder scattering from the polarons and the t2g core spins. Our theory accounts quantitatively for the observed T dependence of the difference spectra, and furthermore, explains the observed correspondence between spectral changes due to increasing doping and decreasing T.
Resumo:
As a liquid is progressively supercooled toward its glass transition temperature, an intriguing weakening of the wavenumber (q) dependence of the structural relaxation time tau(q) in the intermediate-to-large q limit is observed both in experiments and simulation studies. Neither continuous Brownian diffusive dynamics nor discontinuous activated events can alone explain the anomalous wavenumber dependence. Here we use our recently developed theory that unifies the mode coupling theory for continuous dynamics, with the random first order transition theory treatment of activated discontinuous motion as a nucleationlike instanton process to understand the wavenumber dependence of density relaxation. The predicted smooth change in mechanism of relaxation from diffusive to activated, in the crossover regime, is wavevector dependent and appears to be responsible for the observed subquadratic,nalmost linear, q dependence of the relaxation time.