989 resultados para cimento de ionômero de vidro


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work of tensile strength was evaluated the efficacy of 4 cements (S. S. White zinc phoshate, Ketac Cem Easymix glass ionomer, RelyX Luting 2 composite resin/glass ionomer and Panavia 21 TC special acrylic resin) used to fix NiCr crowns to usinated titanium alloy abutments. Were used 40 abutments distributed in groups of 10 elements, to each material. The mechanical essays were developed at a MTS 810 universal machine, adjusted to a 0.5 mm/m velocity. The ANOVA applied to data pointed out the existence of significant differences between groups; the subsequent Tukey´s test (p<0.05) also detected significant differences, except at comparisons of phosphate versus RelyX and phosphate versus Ketac Cem. The better performance was presented by Panavia 21 (1,127.996 N); RelyX (478.197 N) showed itself similar only to phosphate (430.662 N), wich had a performance similar to that of Ketac Cem (227.705 N).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study evaluated the radiopacity and flow of different endodontic sealers: AH Plus, Endo CPM, MTA Fillapex, Sealapex, Epiphany, and Epiphany SE. For the radiopacity test, six specimens measuring 10mm in diameter and 1mm in thickness were fabricated from each material. They were radiographed on an occlusal film alongside an aluminum step wedge. Radiographs were digitized to determine the radiopacity equivalence in millimeters of aluminum. To evaluate the flow, a 120 g load was placed on top of a glass slab containing 0.05 } 0.005ml of sealer. The diameters of each material were measured (mm) with a caliper and samples were photographed. Digitized images were analyzed using the UTHSCSA Image Tool for Windows software, to determine the sealer area (mm2). Data were submitted to ANOVA and Tukey's test at 5% significance. AH Plus and Epiphany SE presented the greatest radiopacity (12.5 mm Al and 12.0 mm Al, respectively) (p>0.05), followed by Epiphany (9.6 mm Al) and Fillapex (8.9 mm Al). Endo CPM (5.46 mm Al) and Sealapex (5.51 mm Al) presented lower radiopacity. MTA Fillapex presented significantly higher values of flow than other sealers (33.11 mm and 844.9 mm2). AH Plus, Epiphany, and Epiphany SE had similar values. Endo CPM (21.05 mm and 342.8 mm2) and Sealapex (19.98 mm and 352.5 mm2) presented the lowest flow values (p>0.05). All sealers presented radiopacity and flow values according to ISO and ANSI/ADA recommendations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The objective of this study was to evaluate the clinical performance of 124 non-carious cervical lesion restorations at 12 months. Materials And Methods: Three study groups were formed according to the material and technique used. All teeth received 37% phosphoric acid etching in enamel and dentin. The teeth of Group I received the conventional adhesive system Scotch Bond Multi Purpose, followed by resin composite Filtek Z350; teeth of Group II were restored with resin-modified glass-ionomer cement Fuji II LC; teeth of Group III were restored with the same resin-modified glass-ionomer cement however, before it was inserted, 2 coats of primer of the Scotch Bond Multi Purpose adhesive system were applied to dentinal tissue. The teeth were evaluated by 2 examiners with regard to the factors of retention, marginal adaptation, marginal discoloration, color alteration, presence of marginal caries lesion, anatomic shape, and sensitivity. Results: Application of the Kruskal-Wallis test showed no statistically significant difference for anatomic shape, marginal discoloration, color alteration, caries lesion, marginal adaptation, and sensitivity among the three study groups, but the variable retention presented statistically significant difference at 12 months, with Group III presenting a behavior superior to that of Group II but similar to that of Group I. Conclusion: The analyzed restorations of non-carious cervical lesions presented a good clinical performance at 12 months.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introdução: O adequado selamento do sistema de canais radiculatres (SCR) obtido através da obturação, evita a infiltração de micro-organismos entre as paredes do canal radicular e o material obturador, reduzindo a possibilidade de insucesso do tratamento endodôntico (TE). A falta de selamento coronal, o atraso da colocação da restauração permanente, a fratura da restauração coronal, assim como uma espessura inadequada da restauração provisória, inferior a 4mm, podem, entre outros factores, ser predisponentes para a recontaminação do SCR obturado. Sendo o selamento da entrada do SCR uma importante etapa do TE, neste estudo pretendeu-se avaliar diferentes materiais para tal procedimento, avaliando qual o material que proporciona menor infiltração. Materiais e métodos: Neste estudo foram utilizados 70 dentes humanos monocanalares, que foram divididos aleatoriamente em 6 grupos. Grupo I (15 dentes) foram selados com ionómero de vidro modificado por resina (Ionoseal - VOCO®), Grupo II (15 dentes) foram selados com ionómero de vidro modicifado por resina (GC Fuji II LC- GA America®), Grupo III (15 dentes) foram selados por um compósito fluído (GrandioSO Heavy Flow - VOCO®), Grupo IV (15 dentes) foram selados por um compósito nanohíbrido (GrandioSO - VOCO®). O Grupo V (5 dentes) e o Grupo VI (5 dentes) foram usados como controlo negativo e positivo, respectivamente. Os dentes foram submetidos a termociclagem de 500 ciclos, de 60 segundos de duração cada um, com variações de temperatura de 5°C - 55°C. Em seguida, foram imersos em corante azul de metileno a 2% para avaliação da infiltração dos materiais. Resultados: Em geral, Ionoseal® demonstrou maior infiltração de corante que os outros materiais, e quando comparado com os demais grupos a diferença foi significativa. Porem entre os grupos 1, 2 e 3 não houve diferença estatística significante. Conclusões: LC Fuji II®, GrandioSo® Nano partícula Flow e GrandioSo® Nano partícula podem ser usados como barreira intracanalar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A utilização de espigões em dentes tratados endodonticamente é um dos temas mais estudados em Medicina Dentária. As opiniões são divergentes em relação aos procedimentos clínicos e materiais a serem utilizados para a colocação e remoção de espigões. O objetivo deste trabalho foi realizar uma revisão bibliográfica de forma a organizar conceitos e princípios clínicos para melhor esclarecer os fatores que determinam a necessidade de colocação, utilização e escolha do tipo de espigão, sua cimentação e técnicas para a remoção. Foram analisadas as características e propriedades dos cimentos de fosfato de zinco, ionômero de vidro, cimentos resinosos de polimerização química, polimerização dupla, foto-polimerizável e os sistemas adesivos etch and rinse, self etch e autoadesivos, bem como as técnicas para a remoção de espigões cimentados com diferentes cimentos e sistemas adesivos para depois acessar o remanescente de guta percha para o retratamento endodôntico. Foi feita uma pesquisa bibliográfica na base de dados electrónica PubMed, Google Scholar e RCAAP com as seguintes palavras chave: “Espigões”; “Retratamento Endodôntico”; “Ionómero de Vidro”; “Fosfato de Zinco”; “Cimentos Resinosos”; “Posts”; “Endodontic Retreatment”; “Glass Ionomer”; Zinc-phosphate”; “Resin Cements"; “Push Out Test”; “Posts AND Removal”. Concluiu-se que a cimentação de espigões pré-fabricados de fibra de vidro com cimentos resinosos de dupla polimerização associados aos sistemas adesivos self etch estão gradualmente substituindo os outros tipos de espigões e demais cimentos e possibilitam restaurar o dente de forma adequada e duradoura. E o uso de ultrassons apresenta maior eficácia e segurança na remoção dos espigões.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glass ionomer cements are glass and polymer composite materials. These materials currently find use in dentistry. The purpose of this work is to obtain glass powders based on the composition 4.5SiO2 - 3Al2O3 - 2CaO to be used in dentistry. The powders were prepared by a chemical route at 700 0C. The properties of glass ionomer cements obtained from powders prepared at 700 ºC were studied. Diametral tensile strength and microhardness were evaluated for the experimental glass ionomer cements and a commercial material. It was concluded that the properties of experimental cements were similar to those of the commercial ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)