389 resultados para cGMP phosphodiesterase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. As verified with recombinant receptors, the cardiostimulant effect of (-)-CGP12177 is mediated through a site at the beta1-adrenoceptor with lower affinity (beta1LAR) compared to the site through which (-)-CGP12177 antagonizes the effects of catecholamines (beta1HAR). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through beta3-adrenoceptors (Skeberdis et al 2008). We therefore investigated whether the effects of (-)-CGP12177 on human atrial trabeculae are antagonized by the beta3-adrenoceptor-selective antagonist L-748,337 (1 microM). (-)-CGP12177 (200 nM) caused a stable increase in force which was significantly reduced by the addition of (-)-bupranolol (1 microM), P = 0.002, (basal 4.45 ± 0.78 mN, IBMX (PDE inhibitor) 5.47 ± 1.01 mN, (-)-CGP12177 9.34 ± 1.33 mN, (-)-bupranolol 5.79 ± 1.08 mN, n = 6) but not affected by the addition of L-748,337 (1 microM), P = 0.12, (basal 4.48 ± 1.32 mN, IBMX 7.15 ± 2.28 mN, (-)-CGP12177 12.51 ± 3.71 mN, L-748,337 10.90 ± 3.49 mN, n = 6). Cumulative concentration-effect curves for (-)-CGP12177 were not shifted to the right by L-748,337 (1 microM). The –logEC50M values of (-)-CGP12177 in the absence and presence of L-748,337 were 7.21±0.09 and 7.41±0.13, respectively (data from 25 trabeculae from 8 patients, P=0.2) The positive inotropic effects of (-)-CGP12177 (IBMX present) were not antagonized by L-748,337 but were blunted by (-)-bupranolol (1 microM). The results rule out an involvement of beta3-adrenoceptors in the positive inotropic effects (-)-CGP12177 in human right atrial myocardium and are consistent with mediation through beta1LAR. Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 1AR has two binding sites which can be activated to cause cardiostimulation. The first, termed, 1HAR (high affinity site of 1AR) is activated by noradrenaline and adrenaline and is blocked by relatively low concentrations of β-blockers including carvedilol (Kaumann and Molenaar, 2008). The other, termed, 1LAR (low affinity site of 1AR) has lower affinity for noradrenaline and adrenaline and is activated by some β-blockers including CGP12177 and pindolol, at higher concentrations than those required to block the receptor (Kaumann and Molenaar, 2008). (-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. The stimulant effects of (-)-CGP12177 at human β1ARs was verified with recombinant receptors (Kaumann and Molenaar, 2008). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through 3ARs in human right atrium (Skeberdis et al 2008). This proposal was not consistent with the lack of blockade of (-)-CGP12177 inotropic effects or increases in L-type Ca2+ current (ICa-L ) by the β3AR blocker 1 μM LY748,337 (Christ et al, 2010). On the otherhand, (-)-CGP12177 increases in inotropic effects and ICa-L were blocked by (-)-bupranolol 1-10 μM (Christ et al, 2010). Chronic infusion of (-)-CGP 12177 (10 mg/Kg/24 hours) for four weeks in an aortic constriction mouse model of heart failure caused an increase in left ventricular wall thickness, fibrosis and inflammation-related left ventricular gene expression levels. Christ T et al (2010) Br J Pharmacol, In press Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABL inhibitors have revolutionized the clinical management of chronic myeloid leukemia, but the BCR-ABLT315I mutation confers resistance to currently approved drugs. Chan et al. show, in this issue of Cancer Cell, that " switch-control" inhibitors block BCR-ABLT315I activity by preventing ABL from switching from the inactive to active conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monolithic stationary phase was prepared via free radical co-polymerization of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with pore diameter tailored specifically for plasmid binding, retention and elution. The polymer was functionalized. with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) for anion-exchange purification of plasmid DNA (pDNA) from clarified lysate obtained from E. coli DH5α-pUC19 culture in a ribonuclease/ protease-free environment. Characterization of the monolithic resin showed a porous material, with 68% of the pores existing in the matrix having diameters above 300 nm. The final product isolated from a single-stage 5 min anion-exchange purification was a pure and homogeneous supercoiled (SC) pDNA with no gDNA, RNA and protein contamination as confirmed by ethidium bromide agarose gel electrophoresis (EtBr-AGE), enzyme restriction analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This non-toxic technique is cGMP compatible and highly scalable for production of pDNA on a commercial level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical studies have demonstrated an impairment of glucocorticoid receptor (GR)-mediated negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis in patients with major depression (GR resistance), and its resolution by antidepressant treatment. Recently, we showed that this impairment is indeed due to a dysfunction of GR in depressed patients (Carvalho et al., 2009), and that the ability of the antidepressant clomipramine to decrease GR function in peripheral blood cells is impaired in patients with major depression who are clinically resistant to treatment (Carvalho et al. 2008). To further investigate the effect of antidepressants on GR function in humans, we have compared the effect of the antidepressants clomipramine, amytriptiline, sertraline, paroxetine and venlafaxine, and of the antipsychotics, haloperidol and risperidone, on GR function in peripheral blood cells from healthy volunteers (n=33). GR function was measured by glucocorticoid inhibition of lypopolysaccharide (LPS)-stimulated interleukin-6 (IL-6) levels. Compared to vehicle-treated cells, all antidepressants inhibited dexamethasone (DEX, 10-100nM) inhibition of LPS-stimulated IL-6 levels (p values ranging from 0.007 to 0.1). This effect was specific to antidepressants, as antipsychotics had no effect on DEX-inhibition of LPS-stimulated IL-6 levels. The phosphodiesterase (PDE) type 4 inhibitor, rolipram, potentiated the effect of antidepressants on GR function, while the GR antagonist, RU-486, inhibited the effect of antidepressants on GR function. These findings indicate that the effect of antidepressants on GR function are specific for this class of psychotropic drugs, and involve second messenger pathways relevant to GR function and inflammation. Furthermore, it also points towards a possible mechanism by which one maybe able to overcome treatment-resistant depression. Research in this field will lead to new insights into the pathophysiology and treatment of affective disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal deposition is a very complex process ruled by numerous factors. A small but important proportion of cases of chondrocalcinosis are monogenic, and many of the genes involved have been identified. These genetic findings strongly point to control of the level of extracellular inorganic pyrophosphate as the primary mechanism for their association with either calcium pyrophosphate dihydrate or hydroxyapatite deposition. However, effects on extracellular inorganic pyrophosphate levels do not explain the mechanism of association in all of these monogenic diseases. Further, there are likely to be several as yet unidentified genes that are important in this common condition. This review highlights what genetic studies have demonstrated about the processes involved in these diverse but related disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta-blockers carvedilol and metoprolol provide important therapeutic strategies for heart failure treatment. Therapy with metoprolol facilitates the control by phosphodiesterase PDE3, but not PDE4, of inotropic effects of catecholamines in human failing ventricle. However, it is not known whether carvedilol has the same effect. We investigated whether the PDE3-selective inhibitor cilostamide (0.3 mu M) or PDE4-selective inhibitor rolipram (1 mu M) modified the positive inotropic and lusitropic effects of catecholamines in ventricular myocardium of heart failure patients treated with carvedilol. Right ventricular trabeculae from explanted hearts of nine carvedilol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through beta(1)-adrenoceptors (beta(2)-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through beta(2)-adrenoceptors (beta(1)-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of the PDE inhibitors. The inotropic potency, estimated from -logEC(50)s, was unchanged for (-)-noradrenaline but decreased 16-fold for (-)-adrenaline in carvedilol-treated compared to non-beta-blocker-treated patients, consistent with the previously reported beta(2)-adrenoceptor-selectivity of carvedilol. Cilostamide caused 2- to 3-fold and 10- to 35-fold potentiations of the inotropic and lusitropic effects of (-)-noradrenaline and (-)-adrenaline, respectively, in trabeculae from carvedilol-treated patients. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline. Treatment of heart failure patients with carvedilol induces PDE3 to selectively control the positive inotropic and lusitropic effects mediated through ventricular beta(2)-adrenoceptors compared to beta(1)-adrenoceptors. The beta(2)-adrenoceptor-selectivity of carvedilol may provide protection against beta(2)-adrenoceptor-mediated ventricular overstimulation in PDE3 inhibitor-treated patients. PDE4 does not control beta(1)- and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in carvedilol-treated patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GCC), a member of the family of membrane bound guanylyl cyclases is the receptor for the heat-stable enterotoxin (ST) peptides and the guanylin family of endogenous peptides. GCC is activated upon ligand binding to increase intracellular cGMP levels, which in turn activates other downstream signalling events in the cell. GCC is also activated in vitro by nonionic detergents. We have used the T84 cell line as a model system to investigate the regulation of GCC activity by ATP. Ligand-stimulated GCC activity is potentiated in the presence of ATP, whereas detergent-stimulated activity is inhibited. The potentiation of GCC activity by ATP is dependent on the presence of Mg2+ ions, and is probably brought about by a direct binding of Mg-ATP to GCC. The protein kinase-like domain of GCC, which has earlier been shown to play a critical role in the regulation of GCC activity, may be a possible site for the binding of Mg-ATP to GCC.