973 resultados para business modeling
Resumo:
The objective of this paper is to investigate and model the characteristics of the prevailing volatility smiles and surfaces on the DAX- and ESX-index options markets. Continuing on the trend of Implied Volatility Functions, the Standardized Log-Moneyness model is introduced and fitted to historical data. The model replaces the constant volatility parameter of the Black & Scholes pricing model with a matrix of volatilities with respect to moneyness and maturity and is tested out-of-sample. Considering the dynamics, the results show support for the hypotheses put forward in this study, implying that the smile increases in magnitude when maturity and ATM volatility decreases and that there is a negative/positive correlation between a change in the underlying asset/time to maturity and implied ATM volatility. Further, the Standardized Log-Moneyness model indicates an improvement to pricing accuracy compared to previous Implied Volatility Function models, however indicating that the parameters of the models are to be re-estimated continuously for the models to fully capture the changing dynamics of the volatility smiles.
Resumo:
The behavior of the drain voltage rise of the Lateral IGBT during inductive turn-off is studied in detail. Numerical simulations show that, if compared with the well known vertical IGBT, the Lateral IGBT presents a differences in the on-state stored charge and in the growth of the depleted region that result in a different drain voltage rise. In this paper a complete model for the voltage rise is devised through an accurate calculation of the equivalent output capacitance. The model is in excellent agreement with two-dimensional simulations. Further, the paper shows that previously proposed models, which targeted the vertical IGBT, are not adequate for the description of the turn-off voltage rise in the Lateral IGBT. © Springer Science + Business Media LLC 2006.
Resumo:
This study considers the potential for influencing business students to become ethical managers by directing their undergraduate learning environment. In particular, the relationship between business students’ academic cheating, as a predictor of workplace ethical behavior, and their approaches to learning is explored. The three approaches to learning identified from the students’ approaches to learning literature are deep approach, represented by an intrinsic interest in and a desire to understand the subject, surface approach, characterized by rote learning and memorization without understanding, and strategic approach, associated with competitive students whose motivation is the achievement of good grades by adopting either a surface or deep approach. Consistent with the hypothesized theoretical model, structural equation modeling revealed that the surface approach is associated with higher levels of cheating, while the deep approach is related to lower levels. The strategic approach was also associated with less cheating and had a statistically stronger influence than the deep approach. Further, a significantly positive relationship reported between deep and strategic approaches suggests that cheating is reduced when deep and strategic approaches are paired. These findings suggest that future managers and business executives can be influenced to behave more ethically in the workplace by directing their learning approaches. It is hoped that the evidence presented may encourage those involved in the design of business programs to implement educational strategies which optimize students’ approaches to learning towards deep and strategic characteristics, thereby equipping tomorrow’s managers and business executives with skills to recognize and respond appropriately to workplace ethical dilemmas.
Resumo:
Deshopping is rapidly turning into a modern day scourge for the retailers worldwide due to its prevalence and regularity. The presence of flexible return policies have made retail return management a real challenging issue for both the present and the future. In this study, we propose and develop a multi-agent simulation model for deshopper behavior in a single shop context. The background, theoretical underpinning, logical and computational model, experiment design and simulation results are reported and discussed in the paper.
Resumo:
This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.
Resumo:
Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.
Resumo:
We try to explain why economic conflicts and illegal business often take place in poor countries. We use the concept of subsistence level of consumption (d) and assume a regular concave utility function for consumption levels higher than d. For consumption levels lower than d utility is constant and equal to zero. Under this framework poor agents are risk-lovers. This result helps to explain why economic conflicts are more likely to appear in poor economies and why poor agents are more willing to undertake illegal business.
Resumo:
In this paper, investment cost asymmetry is introduced in order to test wheter this kind of asymmetry can account for asymmetries in business cycles. By using a smooth transition function, asymmetric investment cost is modeled and introduced in a canonical RBC model. Simulations of the model with Perturbations Method (PM) are very close to simulations through Parameterized Expectations Algorithm (PEA), which allows the use of the former for the sake of time reduction and computational costs. Both symmetric and asymmetric models were simulated and compared. Deterministic and stochastic impulse-response excersices revealed that it is possible to adequately reproduce asymmetric business cycles by modeling asymmetric investment costs. Simulations also showed that higher order moments are insu_cient to detect asymmetries. Instead, methods such as Generalized Impulse Response Analysis (GIRA) and Nonlinear Econometrics prove to be more e_cient diagnostic tools.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
The top managers of a biotechnology startup firm agreed to participate in a system dynamics modeling project to help them think about the firm's growth strategy. The article describes how the model was created and used to stimulate debate and discussion about growth management. The paper highlights several novel features about the process used for capturing management team knowledge. A heavy emphasis was placed on mapping the operating structure of the factory and distribution channels. Qualitative modeling methods (structural diagrams, descriptive variable names, and friendly algebra) were used to capture the management team's descriptions of the business. Simulation scenarios were crafted to stimulate debate about strategic issues such as capacity allocation, capacity expansion, customer recruitment, customer retention, and market growth, and to engage the management team in using the computer to design strategic scenarios. The article concludes with comments on the impact of the project.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.
Resumo:
In this paper, we study the influence of the National Telecom Business Volume by the data in 2008 that have been published in China Statistical Yearbook of Statistics. We illustrate the procedure of modeling “National Telecom Business Volume” on the following eight variables, GDP, Consumption Levels, Retail Sales of Social Consumer Goods Total Renovation Investment, the Local Telephone Exchange Capacity, Mobile Telephone Exchange Capacity, Mobile Phone End Users, and the Local Telephone End Users. The testing of heteroscedasticity and multicollinearity for model evaluation is included. We also consider AIC and BIC criterion to select independent variables, and conclude the result of the factors which are the optimal regression model for the amount of telecommunications business and the relation between independent variables and dependent variable. Based on the final results, we propose several recommendations about how to improve telecommunication services and promote the economic development.
Resumo:
This paper traces the developments of credit risk modeling in the past 10 years. Our work can be divided into two parts: selecting articles and summarizing results. On the one hand, by constructing an ordered logit model on historical Journal of Economic Literature (JEL) codes of articles about credit risk modeling, we sort out articles which are the most related to our topic. The result indicates that the JEL codes have become the standard to classify researches in credit risk modeling. On the other hand, comparing with the classical review Altman and Saunders(1998), we observe some important changes of research methods of credit risk. The main finding is that current focuses on credit risk modeling have moved from static individual-level models to dynamic portfolio models.
Resumo:
Atypical points in the data may result in meaningless e±cient frontiers. This follows since portfolios constructed using classical estimates may re°ect neither the usual nor the unusual days patterns. On the other hand, portfolios constructed using robust approaches are able to capture just the dynamics of the usual days, which constitute the majority of the business days. In this paper we propose an statistical model and a robust estimation procedure to obtain an e±cient frontier which would take into account the behavior of both the usual and most of the atypical days. We show, using real data and simulations, that portfolios constructed in this way require less frequent rebalancing, and may yield higher expected returns for any risk level.