859 resultados para blue-screen
Resumo:
- Objectives Preschool-aged children spend substantial amounts of time engaged in screen-based activities. As parents have considerable control over their child's health behaviours during the younger years, it is important to understand those influences that guide parents' decisions about their child's screen time behaviours. - Design A prospective design with two waves of data collection, 1 week apart, was adopted. - Methods Parents (n = 207) completed a Theory of Planned Behaviour (TPB)-based questionnaire, with the addition of parental role construction (i.e., parents' expectations and beliefs of responsibility for their child's behaviour) and past behaviour. A number of underlying beliefs identified in a prior pilot study were also assessed. - Results The model explained 77% (with past behaviour accounting for 5%) of the variance in intention and 50% (with past behaviour accounting for 3%) of the variance in parental decisions to limit child screen time. Attitude, subjective norms, perceived behavioural control, parental role construction, and past behaviour predicted intentions, and intentions and past behaviour predicted follow-up behaviour. Underlying screen time beliefs (e.g., increased parental distress, pressure from friends, inconvenience) were also identified as guiding parents' decisions. - Conclusion Results support the TPB and highlight the importance of beliefs for understanding parental decisions for children's screen time behaviours, as well as the addition of parental role construction. This formative research provides necessary depth of understanding of sedentary lifestyle behaviours in young children which can be adopted in future interventions to test the efficacy of the TPB mechanisms in changing parental behaviour for their child's health.
Resumo:
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.
Resumo:
This special issue of Studies in Australasian Cinema features a selection of papers presented at the 17th Film and History Association of Australia and New Zealand (FHAANZ) conference, held at Queensland University of Technology between 1 and 3 July 2015. This was the first FHAANZ conference to be hosted in Queensland since 1998. Informed by historical and archival research, the articles examine overlooked or underdeveloped aspects of screen history, offer new historical perspectives, or consider key contemporary issues regarding the preservation of Australian screen history.
Resumo:
In a reverse Stroop task, observers respond to the meaning of a color word irrespective of the color in which the word is printed—for example, the word red may be printed in the congruent color (red), an incongruent color (e.g., blue), or a neutral color (e.g., white). Although reading of color words in this task is often thought to be neither facilitated by congruent print colors nor interfered with incongruent print colors, this interference has been detected by using a response method that does not give any bias in favor of processing of word meanings or processing of print colors. On the other hand, evidence for the presence of facilitation in this task has been scarce, even though this facilitation is theoretically possible. By modifying the task such that participants respond to a stimulus color word by pointing to a corresponding response word on a computer screen with a mouse, the present study investigated the possibility that not only interference but also facilitation would take place in a reverse Stroop task. Importantly, in this study, participants’ responses were dynamically tracked by recording the entire trajectories of the mouse. Arguably, this method provided richer information about participants’ performance than traditional measures such as reaction time and accuracy, allowing for more detailed (and thus potentially more sensitive) investigation of facilitation and interference in the reverse Stroop task. These trajectories showed that the mouse’s approach toward correct response words was significantly delayed by incongruent print colors but not affected by congruent print colors, demonstrating that only interference, not facilitation, was present in the current task. Implications of these findings are discussed within a theoretical framework in which the strength of association between a task and its response method plays a critical role in determining how word meanings and print colors interact in reverse Stroop tasks.
Resumo:
This communication highlights unstable blue-green emitting Cu doped ZnSe nanocrystals stabilized by diluting the surface Se with a calculated amount of S.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
A systematic investigation has been carried out into the optimization of diffraction efficiency (η) of methylene blue sensitized dichromated gelatin (MBDCG) holograms. The influence of the following parameters on η have been studied: prehardener concentration (CH), concentrations of ammonium dichromate (CA) and methylene blue (CM) as photosensitizers, and exposure (E). This study revealed that with CH similar, equals 0.5, CA similar, equals 30, CM similar, equals 0.3, and E similar, equals 400–600, optimum diffraction efficiency of over 80%, can be easily achieved in MBDCG holograms.
Resumo:
Cibacron blue is a potent inhibitor of 3-HBA-6-hydroxylase at a concentration < 1 mu M. Kinetic analyses revealed that at a concentration below 0.5 mu M the dye behaves as an uncompetitive inhibitor with respect to 3-HBA and competes with NADH for the same site on the enzyme. The alteration of the near-UV CD spectrum and quenching of the emission fluorescence of the enzyme by cibacron blue indicates a significant alteration in the environment of aromatic amino acid residues due to a stacking interaction and subtle conformatiodnal changes in the enzyme. The concentration-dependent quenching of the intrinsic fluorescence of the enzyme by cibacron blue was employed to determine the binding parameters such as association constant (K-a) and stoichiometry (r) for the enzyme-dye complex.
Resumo:
An experimental study to ascertain the role of external electron donor in methylene blue sensitized dichromated gelatin (MBDCG) holograms has been carried out. The required volume holographic transmission gratings in MBDCG have been recorded using 633-nm light from a He-Ne laser. Three well-known electron donors, namely, N, N-dimethylformamide (DMF); ethylenediaminetetraacetic acid (EDTA); triethanolamine (TEA), were used in this study. The variation of diffraction efficiency (η) as a function of light exposure (E) and concentration (C) of the electron donor under consideration was chosen as the figure of merit for judging the role of external electron donor in MBDCG holograms. A self-consistent analysis of the experimental results was carried out by recalling the various known facts about the photochemistry and the hologram formation in DSDCG and also DCG. The important findings and conclusions are as follows: (i) Each η vs E graph is a bell-shaped curve and its peak height is influenced in a characteristic manner by the external electron donor used. (ii) High diffraction efficiency/recording speed can be achieved in pure MBDCG holograms. (iii) The diffraction efficiency/recording speed achieved in electron donor sensitized MBDCG holograms did not show any significant improvement at all over that observed in pure MBDCG holograms. (iv) In electron donor sensitized MBDCG holograms, the electron donor used, depending on its type and concentration, appears to promote the process of cross-linking of gelatin molecules in a manner to either retain or deteriorate the refractive-index modulation achieved using pure MBDCG.
Resumo:
The results of an experimental investigation on the storage life and reprocessibility of methylene blue sensitized dichromated gelatin (MBDCG) holograms are reported. The major conclusions of the investigation are: (i) Storage of MBDCG holograms in normal laboratory conditions for long periods is possible and it diminishes somewhat their diffraction efficiency. (ii) The results on short time storage and long time storage are almost similar, thus indicating that the diffraction efficiency can be stabilized through storage in a relatively short period of time. (iii) The deterioration in the diffraction efficiency on storage is less [D(eta) < 20%] for gratings of low/medium initial efficiency (eta < 70%) and it is more for gratings of high initial efficiency. (iv) About 65-95% restoration of the diffraction efficiency can be accomplished through reprocessing. (v) The restoration of diffraction efficiency is almost perfect [R(eta) > 80%] for gratings of low/medium initial efficiency (eta <75%) whereas it is rather imperfect for gratings having high initial efficiency.
Resumo:
Well uniform microspheres of phase pure Covellite were synthesized through a simple hydrothermal approach using poly vinyl pyrrolidone (PVP) as surfactant. The micro-spheres were constituted of numerous self-organized knitted nano-ribbons of similar to 30 nm thickness. The effect of conc. PVP in the hydrothermal precursor solution on the product morphology was investigated. Based on the out-coming product micro-architecture a growth mechanism was proposed which emphasized bubbled nucleation inside the hydrothermal reactor. In a comparative study on linear optical properties, enhancement of luminescent intensity was observed for nano-ribbon clung microspheres rather than that of agglomerates of distorted particles, which may be attributed to better crystallinity as well as reduced surface defects and ionic vacancies for ribbon-like nano-structures.
Resumo:
ABSTRACT The Baltic Sea is a vulnerable ecosystem currently undergoing a number of changes, both natural and human induced. The changes are likely to affect the species found on these shores, e.g. their distribution and interactions with other species. Blue mussels (Mytilus trossulus x Mytilus edulis) provide one of the main biogenic hard structures on the shallow shores of the Baltic Sea where they aggregate into dense beds and provide a number of resources for over 40 associated macrofaunal species, thus functioning as ecosystem engineers. The blue mussel, being a marine species, is highly likely to be affected by any changes in sea water salinity, circulation and/or water balance. These changes could trickle down also to affect the associated macrofaunal communities. The aims of this thesis were three-fold: first, I examined and described the macrofaunal communities found within blue mussel patches since the fauna associated with mussel patches had never been described in the study area prior to this thesis. Second, I explored how changes in mussel density, size as well as patch size and shape would affect the mussel communities. Finally, I tested how general landscape theories derived from terrestrial studies function in blue mussel systems. Theories included the structural heterogeneity hypothesis, species-area relationships, edge effects and patch isolation effects. The work shows that blue mussels in the northern Baltic Sea have an indisputable function as diversity hotspots and that the faunal assemblages found in mussel patches are extremely rich and unique. Further on, it shows that changes in mussel biomass, size, patch size and amount of edge have the potential to alter the faunal assemblages and diversity within patches. Finally, it shows that although some landscape theories, such as the structural heterogeneity hypothesis, seem to apply also in blue mussel communities, others cannot be directly applied due to the different prevailing conditions in the study system. This is a pioneering work looking at diversity shaping processes on the rocky shores of the Gulf of Finland, making up over 40% of the total water basin. A focus on niche construction, positive facilitation effects and ecosystem engineering could provide new insights and methods for conservation biology, but before this can be done, we need to fully understand the circumstances under which a species becomes an ecosystem engineer and recognize the systems in which it functions.