954 resultados para automated detection
Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle
Resumo:
The aims were to determine whether measures of acceleration of the legs and back of dairy cows while they walk could help detect changes in gait or locomotion associated with lameness and differences in the walking surface. In 2 experiments, 12 or 24 multiparous dairy cows were fitted with five 3-dimensional accelerometers, 1 attached to each leg and 1 to the back, and acceleration data were collected while cows walked in a straight line on concrete (experiment 1) or on both concrete and rubber (experiment 2). Cows were video-recorded while walking to assess overall gait, asymmetry of the steps, and walking speed. In experiment 1, cows were selected to maximize the range of gait scores, whereas no clinically lame cows were enrolled in experiment 2. For each accelerometer location, overall acceleration was calculated as the magnitude of the 3-dimensional acceleration vector and the variance of overall acceleration, as well as the asymmetry of variance of acceleration within the front and rear pair of legs. In experiment 1, the asymmetry of variance of acceleration in the front and rear legs was positively correlated with overall gait and the visually assessed asymmetry of the steps (r ≥0.6). Walking speed was negatively correlated with the asymmetry of variance of the rear legs (r=−0.8) and positively correlated with the acceleration and the variance of acceleration of each leg and back (r ≥0.7). In experiment 2, cows had lower gait scores [2.3 vs. 2.6; standard error of the difference (SED)=0.1, measured on a 5-point scale] and lower scores for asymmetry of the steps (18.0 vs. 23.1; SED=2.2, measured on a continuous 100-unit scale) when they walked on rubber compared with concrete, and their walking speed increased (1.28 vs. 1.22m/s; SED=0.02). The acceleration of the front (1.67 vs. 1.72g; SED=0.02) and rear (1.62 vs. 1.67g; SED=0.02) legs and the variance of acceleration of the rear legs (0.88 vs. 0.94g; SED=0.03) were lower when cows walked on rubber compared with concrete. Despite the improvements in gait score that occurred when cows walked on rubber, the asymmetry of variance of acceleration of the front leg was higher (15.2 vs. 10.4%; SED=2.0). The difference in walking speed between concrete and rubber correlated with the difference in the mean acceleration and the difference in the variance of acceleration of the legs and back (r ≥0.6). Three-dimensional accelerometers seem to be a promising tool for lameness detection on farm and to study walking surfaces, especially when attached to a leg.
Resumo:
We address the problem of detecting cells in biological images. The problem is important in many automated image analysis applications. We identify the problem as one of clustering and formulate it within the framework of robust estimation using loss functions. We show how suitable loss functions may be chosen based on a priori knowledge of the noise distribution. Specifically, in the context of biological images, since the measurement noise is not Gaussian, quadratic loss functions yield suboptimal results. We show that by incorporating the Huber loss function, cells can be detected robustly and accurately. To initialize the algorithm, we also propose a seed selection approach. Simulation results show that Huber loss exhibits better performance compared with some standard loss functions. We also provide experimental results on confocal images of yeast cells. The proposed technique exhibits good detection performance even when the signal-to-noise ratio is low.
Resumo:
Detection of QRS serves as a first step in many automated ECG analysis techniques. Motivated by the strong similarities between the signal structures of an ECG signal and the integrated linear prediction residual (ILPR) of voiced speech, an algorithm proposed earlier for epoch detection from ILPR is extended to the problem of QRS detection. The ECG signal is pre-processed by high-pass filtering to remove the baseline wandering and by half-wave rectification to reduce the ambiguities. The initial estimates of the QRS are iteratively obtained using a non-linear temporal feature, named the dynamic plosion index suitable for detection of transients in a signal. These estimates are further refined to obtain a higher temporal accuracy. Unlike most of the high performance algorithms, this technique does not make use of any threshold or differencing operation. The proposed algorithm is validated on the MIT-BIH database using the standard metrics and its performance is found to be comparable to the state-of-the-art algorithms, despite its threshold independence and simple decision logic.
Resumo:
Breast cancer is one of the leading cause of cancer related deaths in women and early detection is crucial for reducing mortality rates. In this paper, we present a novel and fully automated approach based on tissue transition analysis for lesion detection in breast ultrasound images. Every candidate pixel is classified as belonging to the lesion boundary, lesion interior or normal tissue based on its descriptor value. The tissue transitions are modeled using a Markov chain to estimate the likelihood of a candidate lesion region. Experimental evaluation on a clinical dataset of 135 images show that the proposed approach can achieve high sensitivity (95 %) with modest (3) false positives per image. The approach achieves very similar results (94 % for 3 false positives) on a completely different clinical dataset of 159 images without retraining, highlighting the robustness of the approach.
Resumo:
[ES]La fibrilación ventricular (VF) es el primer ritmo registrado en el 40\,\% de las muertes súbitas por paro cardiorrespiratorio extrahospitalario (PCRE). El único tratamiento eficaz para la FV es la desfibrilación mediante una descarga eléctrica. Fuera del hospital, la descarga se administra mediante un desfibrilador externo automático (DEA), que previamente analiza el electrocardiograma (ECG) del paciente y comprueba si presenta un ritmo desfibrilable. La supervivencia en un caso de PCRE depende fundamentalmente de dos factores: la desfibrilación temprana y la resucitación cardiopulmonar (RCP) temprana, que prolonga la FV y por lo tanto la oportunidad de desfibrilación. Para un correcto análisis del ritmo cardiaco es necesario interrumpir la RCP, ya que, debido a las compresiones torácicas, la RCP introduce artefactos en el ECG. Desafortunadamente, la interrupción de la RCP afecta negativamente al éxito en la desfibrilación. En 2003 se aprobó el uso del DEA en pacientes entre 1 y 8 años. Los DEA, que originalmente se diseñaron para pacientes adultos, deben discriminar de forma precisa las arritmias pediátricas para que su uso en niños sea seguro. Varios DEAs se han adaptado para uso pediátrico, bien demostrando la precisión de los algoritmos para adultos con arritmias pediátricas, o bien mediante algoritmos específicos para arritmias pediátricas. Esta tesis presenta un nuevo algoritmo DEA diseñado conjuntamente para pacientes adultos y pediátricos. El algoritmo se ha probado exhaustivamente en bases de datos acordes a los requisitos de la American Heart Association (AHA), y en registros de resucitación con y sin artefacto RCP. El trabajo comenzó con una larga fase experimental en la que se recopilaron y clasificaron retrospectivamente un total de 1090 ritmos pediátricos. Además, se revisó una base de arritmias de adultos y se añadieron 928 nuevos ritmos de adultos. La base de datos final contiene 2782 registros, 1270 se usaron para diseñar el algoritmo y 1512 para validarlo. A continuación, se diseñó un nuevo algoritmo DEA compuesto de cuatro subalgoritmos. Estos subalgoritmos están basados en un conjunto de nuevos parámetros para la detección de arritmias, calculados en diversos dominios de la señal, como el tiempo, la frecuencia, la pendiente o la función de autocorrelación. El algoritmo cumple las exigencias de la AHA para la detección de ritmos desfibrilables y no-desfibrilables tanto en pacientes adultos como en pediátricos. El trabajo concluyó con el análisis del comportamiento del algoritmo con episodios reales de resucitación. En los ritmos que no contenían artefacto RCP se cumplieron las exigencias de la AHA. Posteriormente, se estudió la precisión del algoritmo durante las compresiones torácicas, antes y después de filtrar el artefacto RCP. Para suprimir el artefacto se utilizó un nuevo método desarrollado a lo largo de la tesis. Los ritmos desfibrilables se detectaron de forma precisa tras el filtrado, los no-desfibrilables sin embargo no.
Resumo:
This report documents the methods used at the Monterey Bay Aquarium Research Institute (MBARI) for analyzing seawater nutrient samples with an Alpkem Series 300 Rapid Flow Analyzer (RFA) system. The methods have been optimized for the particular requirements of this laboratory. The RFA system has been used to analyze approximately 20,000 samples during the past two years. The methods have been optimized to run nutrient analyses in a routine manner with a detection limit of better than -±1% and a within run precision of -±1% of the full scale concentration range. The normal concentration ranges are 0-200 ~M silicate, 0-5 ~M phosphate, 0-50 ~M nitrate, 0-3 ~M nitrite, and 0-10 ~M ammonium. The memorandum is designed to be used in a loose-leaf binder format. Each page is dated and as revisions are made, they should be inserted into the binder. The revisions should be added into the binder. Retain the old versions in order to maintain a historical record of the procedures. (88 pages)
Resumo:
We assess the application of the second-generation Environmental Sample Processor (ESP) for the detection of harmful algal bloom (HAB) species in field and laboratory settings using two molecular probe techniques: a sandwich hybridization assay (SHA) and fluorescent in situ hybridization (FISH). During spring 2006, the first time this new instrument was deployed, the ESP successfully automated application of DNA probe arrays for various HAB species and other planktonic taxa, but non-specific background binding on the SHA probe array support made results interpretation problematic. Following 2006, the DNA array support membrane that we were using was replaced with a different membrane, and the SHA chemistry was adjusted. The sensitivity and dynamic range of these modifications were assessed using 96-well plate and ESP array SHA formats for several HAB species found commonly in Monterey Bay over a range of concentrations; responses were significantly correlated (p < 0.01). Modified arrays were deployed in 2007. Compared to 2006, probe arrays showed improved signal:noise, and remote detection of various HAB species was demonstrated. We confirmed that the ESP and affiliated assays can detect HAB populations at levels below those posing human health concerns, and results can be related to prevailing environmental conditions in near real-time.
Resumo:
The safety of post-earthquake structures is evaluated manually through inspecting the visible damage inflicted on structural elements. This process is time-consuming and costly. In order to automate this type of assessment, several crack detection methods have been created. However, they focus on locating crack points. The next step, retrieving useful properties (e.g. crack width, length, and orientation) from the crack points, has not yet been adequately investigated. This paper presents a novel method of retrieving crack properties. In the method, crack points are first located through state-of-the-art crack detection techniques. Then, the skeleton configurations of the points are identified using image thinning. The configurations are integrated into the distance field of crack points calculated through a distance transform. This way, crack width, length, and orientation can be automatically retrieved. The method was implemented using Microsoft Visual Studio and its effectiveness was tested on real crack images collected from Haiti.
Resumo:
Pavement condition assessment is essential when developing road network maintenance programs. In practice, the data collection process is to a large extent automated. However, pavement distress detection (cracks, potholes, etc.) is mostly performed manually, which is labor-intensive and time-consuming. Existing methods either rely on complete 3D surface reconstruction, which comes along with high equipment and computation costs, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In this paper we present a method for automated pothole detection in asphalt pavement images. In the proposed method an image is first segmented into defect and non-defect regions using histogram shape-based thresholding. Based on the geometric properties of a defect region the potential pothole shape is approximated utilizing morphological thinning and elliptic regression. Subsequently, the texture inside a potential defect shape is extracted and compared with the texture of the surrounding non-defect pavement in order to determine if the region of interest represents an actual pothole. This methodology has been implemented in a MATLAB prototype, trained and tested on 120 pavement images. The results show that this method can detect potholes in asphalt pavement images with reasonable accuracy.
Resumo:
Aside from cracks, the impact of other surface defects, such as air pockets and discoloration, can be detrimental to the quality of concrete in terms of strength, appearance and durability. For this reason, local and national codes provide standards for quantifying the quality impact of these concrete surface defects and owners plan for regular visual inspections to monitor surface conditions. However, manual visual inspection of concrete surfaces is a qualitative (and subjective) process with often unreliable results due to its reliance on inspectors’ own criteria and experience. Also, it is labor intensive and time-consuming. This paper presents a novel, automated concrete surface defects detection and assessment approach that addresses these issues by automatically quantifying the extent of surface deterioration. According to this approach, images of the surface shot from a certain angle/distance can be used to automatically detect the number and size of surface air pockets, and the degree of surface discoloration. The proposed method uses histogram equalization and filtering to extract such defects and identify their properties (e.g. size, shape, location). These properties are used to quantify the degree of impact on the concrete surface quality and provide a numerical tool to help inspectors accurately evaluate concrete surfaces. The method has been implemented in C++ and results that validate its performance are presented.
Resumo:
Manually inspecting bridges is a time-consuming and costly task. There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame as some state DOTs cannot afford the essential costs and manpower. This paper presents a novel method that can detect bridge concrete columns from visual data for the purpose of eventually creating an automated bridge condition assessment system. The method employs SIFT feature detection and matching to find overlapping areas among images. Affine transformation matrices are then calculated to combine images containing different segments of one column into a single image. Following that, the bridge columns are detected by identifying the boundaries in the stitched image and classifying the material within each boundary. Preliminary test results using real bridge images indicate that most columns in stitched images can be correctly detected and thus, the viability of the application of this research.
Resumo:
Pavement condition assessment is essential when developing road network maintenance programs. In practice, pavement sensing is to a large extent automated when regarding highway networks. Municipal roads, however, are predominantly surveyed manually due to the limited amount of expensive inspection vehicles. As part of a research project that proposes an omnipresent passenger vehicle network for comprehensive and cheap condition surveying of municipal road networks this paper deals with pothole recognition. Existing methods either rely on expensive and high-maintenance range sensors, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In our previous work we created a pothole detection method for pavement images. In this paper we present an improved recognition method for pavement videos that incrementally updates the texture signature for intact pavement regions and uses vision tracking to track detected potholes. The method is tested and results demonstrate its reasonable efficiency.
Resumo:
Vision based tracking can provide the spatial location of construction entities such as equipment, workers, and materials in large scale, congested construction sites. It tracks entities in video streams by inferring their locations based on the entities’ visual features and motion histories. To initiate the process, it is necessary to determine the pixel areas corresponding to the construction entities to be tracked in the following consecutive video frames. In order to fully automate the process, an automated way of initialization is needed. This paper presents the method for construction worker detection which can automatically recognize and localize construction workers in video frames. The method first finds the foreground areas of moving objects using a background subtraction method. Within these foreground areas, construction workers are recognized based on the histogram of oriented gradients (HOG) and histogram of the HSV colors. HOG’s have proved to work effectively for detection of people, and the histogram of HSV colors helps differentiate between pedestrians and construction workers wearing safety vests. Preliminary experiments show that the proposed method has the potential to automate the initialization process of vision based tracking.
Resumo:
A method for the specific determination of cobalt based on reversed-phase liquid chromatography with amperometric detection via on-column complex formation has been developed. A water-soluble chelating agent, 1-(2-pyridylazo)-2-naphthol-6-sulphonic acid (PAN-6S), is added to the mobile phase and aqueous cobalt solutions are injected directly into the column to form in situ the cobalt-PAN-6S chelate, which is then separated from other metal PAN-6S chelates and subjected to reductive amperometric detection at a moderate potential of -0.3 V. Because the procedure eliminates the interference of oxygen and depresses the electrochemical reduction of the mobile phase-containing ligand PAN-6S, by virtue of the quasi:reversible electrode process of the cobalt-PAN-6S complex, a low detection limit of 0.06 ng can be readily obtained. Interference effects were examined for sixteen common metal species, and at a 5- to 8000-fold excess by mass no obvious interference was observed. The feasibility of the method as an approach to the specific analysis of cobalt in a hair sample has been demonstrated.
Resumo:
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.