947 resultados para atom interferometry
Resumo:
The quantitative phase-mapping of the domain nucleation in MgO:LiNbO3 crystals is presented by using the digital holographic interferometry. An unexpected peak phase at the beginning of the domain nucleation is observed and it is lowered as the spreading of the domain nucleus. The existence of the nucleus changes the moving speed of the domain wall by pinning it for 3s. Such in-situ quantitative analysis of the domain nucleation process is a key to optimizing domain structure fabrication.
Resumo:
We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.
Resumo:
The application of digital holographic interferometry on the quantitative measurement of the domain inversion in a RuO2: LiNbO3 crystal wafer is presented. The recorded holograms are reconstructed by the angular spectrum method. From the reconstructed phase distribution we can clearly observe the boundary between the inverted and un-inverted domain regions. Comparisons with the results reconstructed by use of the Fresnel transform method are given. Factors that influence the measurement include the spectrum filter size and the spectrum movement are discussed. The spectrum filter size has an effect on the measurement of the details. Although the spectrum movement affects every single reconstructed image, it has no influence on the final measurement.
Resumo:
The phase contrast across the crystal thickness induced by the internal field is measured by the digital holographic interferometry just after the congruent lithium niobate crystal is partially poled. The direction of applied external field is antiparallel to that of internal field, and the measured phase contrast varies linearly with the applied external field. A new internal field is obtained by this method and named effective internal field. The distinct discrepancy between effective and equivalent internal fields is observed. The authors attribute this effect to the new macroscopic representation of elastic dipole components of defect complex in the crystal. (c) 2007 American Institute of Physics.
Resumo:
We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We proposed a high accuracy image sensor technique for sinusoidal phase-modulating interferometer in the field of the surface profile measurements. It solved the problem of the CCD's pixel offset of the same column under two adjacent rows, eliminated the spectral leakage, and reduced the influence of external interference to the measurement accuracy. We measured the surface profile of a glass plate, and its repeatability precision was less than 8 nm and its relative error was 1.15 %. The results show that it can be used to measure surface profile with high accuracy and strong anti-interference ability. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The phase mapping of domain kinetics under the uniform steady-state electric field is achieved and investigated in the LiNbO3 crystals by digital holographic interferometry. We obtained the sequences of reconstructed three-dimensional and two-dimensional wave-field phase distributions during the electric poling in the congruent and near stoichiometric LiNbO3 crystals. The phase mapping of individual domain nucleation and growth in the two crystals are obtained. It is found that both longitudinal and lateral domain growths are not linear during the electric poling. The phase mapping of domain wall motions in the two crystals is also obtained. Both the phase relaxation and the pinning-depinning mechanism are observed during the domain wall motion. The residual phase distribution is observed after the high-speed domain wall motion. The corresponding analyses and discussions are proposed to explain the phenomena.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
We report the measured group delay dispersion (GDD) of new crystals Yb:Gd2SiO5 (Yb:GSO), Yb:GdYSiO5 (Yb:GYSO) and Yb:LuYSiO5 (Yb:LYSO) over wavelengths from 1000nm to 1200nm, with a white-light interferometer. Those GDD data should be useful for the dispersion compensation for femtosecond pulse generation in the lasers with these new crystals as the gain media. (C) 2007 Optical Society of America