887 resultados para arabic script
Resumo:
Simple formalized rules are proposed for automatic phonetic transcription of Tamil words into Roman script. These rules are syntax-directed and require a one-symbol look-ahead facility and hence easily automated in a digital computer. Some suggestions are also put forth for the linearization of Tamil script for handling these by modern machinery.
Resumo:
We report a hierarchical blind script identifier for 11 different Indian scripts. An initial grouping of the 11 scripts is accomplished at the first level of this hierarchy. At the subsequent level, we recognize the script in each group. The various nodes of this tree use different feature-classifier combinations. A database of 20,000 words of different font styles and sizes is collected and used for each script. Effectiveness of Gabor and Discrete Cosine Transform features has been independently, evaluated using nearest neighbor linear discriminant and support vector machine classifiers. The minimum and maximum accuracies obtained, using this hierarchical mechanism, are 92.2% and 97.6%, respectively.
Resumo:
The aim of the dissertation is to explore the idea of philosophy as a path to happiness in classical Arabic philosophy. The starting point is in comparison of two distinct currents between the 10th and early 11th centuries, Peripatetic philosophy, represented by al-Fārābī and Ibn Sīnā, and Ismaili philosophy represented by al-Kirmānī and the Brethren of Purity. They initially offer two contrasting views about philosophy in that the attitude of the Peripatetics is rationalistic and secular in spirit, whereas for the Ismailis philosophy represents the esoteric truth behind revelation. Still, they converge in their view that the ultimate purpose of philosophy lies in its ability to lead man towards happiness. Moreover, they share a common concept of happiness as a contemplative ideal of human perfection, which refers primarily to an otherworldly state of the soul s ascent to the spiritual world. For both the way to happiness consists of two parts: theory and practice. The practical part manifests itself in the idea of the purification of the rational soul from its bodily attachments in order for it to direct its attention fully to the contemplative life. Hence, there appears an ideal of philosophical life with the goal of relative detachment from the worldly life. The regulations of the religious law in this context appear as the primary means for the soul s purification, but for all but al-Kirmānī they are complemented by auxiliary philosophical practices. The ascent to happiness, however, takes place primarily through the acquisition of theoretical knowledge. The saving knowledge consists primarily of the conception of the hierarchy of physical and metaphysical reality, but all of philosophy forms a curriculum through which the soul gradually ascends towards a spiritual state of being along an order that is inverse to the Neoplatonic emanationist hierarchy of creation. For Ismaili philosophy the ascent takes place from the exoteric religious sciences towards the esoteric philosophical knowledge. For Peripatetic philosophers logic performs the function of an instrument enabling the ascent, mathematics is treated either as propaedeutic to philosophy or as a mediator between physical and metaphysical knowledge, whereas physics and metaphysics provide the core of knowledge necessary for the attainment of happiness.
Resumo:
We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.
Resumo:
In this paper, we present an unrestricted Kannada online handwritten character recognizer which is viable for real time applications. It handles Kannada and Indo-Arabic numerals, punctuation marks and special symbols like $, &, # etc, apart from all the aksharas of the Kannada script. The dataset used has handwriting of 69 people from four different locations, making the recognition writer independent. It was found that for the DTW classifier, using smoothed first derivatives as features, enhanced the performance to 89% as compared to preprocessed co-ordinates which gave 85%, but was too inefficient in terms of time. To overcome this, we used Statistical Dynamic Time Warping (SDTW) and achieved 46 times faster classification with comparable accuracy i.e. 88%, making it fast enough for practical applications. The accuracies reported are raw symbol recognition results from the classifier. Thus, there is good scope of improvement in actual applications. Where domain constraints such as fixed vocabulary, language models and post processing can be employed. A working demo is also available on tablet PC for recognition of Kannada words.
Resumo:
This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.
Resumo:
This paper describes a new method of color text localization from generic scene images containing text of different scripts and with arbitrary orientations. A representative set of colors is first identified using the edge information to initiate an unsupervised clustering algorithm. Text components are identified from each color layer using a combination of a support vector machine and a neural network classifier trained on a set of low-level features derived from the geometric, boundary, stroke and gradient information. Experiments on camera-captured images that contain variable fonts, size, color, irregular layout, non-uniform illumination and multiple scripts illustrate the robustness of the method. The proposed method yields precision and recall of 0.8 and 0.86 respectively on a database of 100 images. The method is also compared with others in the literature using the ICDAR 2003 robust reading competition dataset.
Resumo:
In this work, we describe a system, which recognises open vocabulary, isolated, online handwritten Tamil words and extend it to recognize a paragraph of writing. We explain in detail each step involved in the process: segmentation, preprocessing, feature extraction, classification and bigram-based post-processing. On our database of 45,000 handwritten words obtained through tablet PC, we have obtained symbol level accuracy of 78.5% and 85.3% without and with the usage of post-processing using symbol level language models, respectively. Word level accuracies for the same are 40.1% and 59.6%. A line and word level segmentation strategy is proposed, which gives promising results of 100% line segmentation and 98.1% word segmentation accuracies on our initial trials of 40 handwritten paragraphs. The two modules have been combined to obtain a full-fledged page recognition system for online handwritten Tamil data. To the knowledge of the authors, this is the first ever attempt on recognition of open vocabulary, online handwritten paragraphs in any Indian language.