916 resultados para angiotensin II type 1 receptor (AT(1) receptor)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of the known biological effects of the renin–angiotensin system are mediated by the type-1 (AT1) receptor, and the functions of the type-2 (AT2) receptor are largely unknown. We investigated the role of the AT2 receptor in the vascular and renal responses to physiological increases in angiotensin II (ANG II) in mice with targeted deletion of the AT2 receptor gene. Mice lacking the AT2 receptor (AT2-null mice) had slightly elevated systolic blood pressure (SBP) compared with that of wild-type (WT) control mice (P < 0.0001). In AT2-null mice, infusion of ANG II (4 pmol/kg/min) for 7 days produced a marked and sustained increase in SBP [from 116 ± 0.5 to 208 ± 1 mmHg (P < 0.0001) (1 mmHg = 133 Pa)] and reduction in urinary sodium excretion (UNaV) [from 0.6 ± 0.01 to 0.05 ± 0.002 mM/day (P < 0.0001)] whereas neither SBP nor UNaV changed in WT mice. AT2-null mice had low basal levels of renal interstitial fluid bradykinin (BK), and cyclic guanosine 3′,5′-monophosphate, an index of nitric oxide production, compared with WT mice. In WT mice, dietary sodium restriction or ANG II infusion increased renal interstitial fluid BK, and cyclic guanosine 3′,5′-monophosphate by ≈4-fold (P < 0.0001) whereas no changes were observed in AT2-null mice. These results demonstrate that the AT2 receptor is necessary for normal physiological responses of BK and nitric oxide to ANG II. Absence of the AT2 receptor leads to vascular and renal hypersensitivity to ANG II, including sustained antinatriuresis and hypertension. These results strongly suggest that the AT2 receptor plays a counterregulatory protective role mediated via BK and nitric oxide against the antinatriuretic and pressor actions of ANG II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the “selective” cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidence suggest that angiotensin II (A-II) participates in the postnatal development of the kidney in rats. Many effects of A-II are mediated by mitogen-activated protein kinase (MAPK) pathways. This study investigated the influence that treatment with losartan during lactation has on MAPKs and on A-II receptor types 1 (AT(1)) and 2 (AT(2)) expression in the renal cortices of the offspring of dams exposed to losartan during lactation. In addition, we evaluated the relationship between such expression and changes in renal function and structure. Rat pups from dams receiving 2% sucrose or losartan diluted in 2% sucrose (40 mg/dl) during lactation were killed 30 days after birth, and the kidneys were removed for histological, immunohistochemical, and Western blot analysis. AT(1) and AT(2) receptors and p-p38, c-Jun N-terminal kinases (p-JNK) and extracellular signal-regulated protein kinases (p-ERK) expression were evaluated using Western blot analysis. The study-group rats presented an increase in AT(2) receptor and MAPK expression. In addition, these rats also presented lower glomerular filtration rate (GFR), greater albuminuria, and changes in renal structure. In conclusion, newborn rats from dams exposed to losartan during lactation presented changes in renal structure and function, which were associated with AT(2) receptor and MAPK expression in the kidneys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the blockade of the renin-angiotensin system (RAS) achieved with 2 angiotensin (Ang) antagonists given either alone at different doses or with an ACE inhibitor. First, 20 normotensive subjects were randomly assigned to 100 mg OD losartan (LOS) or 80 mg OD telmisartan (TEL) for 1 week; during another week, the same doses of LOS and TEL were combined with 20 mg OD lisinopril. Then, 10 subjects were randomly assigned to 200 mg OD LOS and 160 mg OD TEL for 1 week and 100 mg BID LOS and 80 mg BID TEL during the second week. Blockade of the RAS was evaluated with the inhibition of the pressor effect of exogenous Ang I, an ex vivo receptor assay, and the changes in plasma Ang II. Trough blood pressure response to Ang I was blocked by 35+/-16% (mean+/-SD) with 100 mg OD LOS and by 36+/-13% with 80 mg OD TEL. When combined with lisinopril, blockade was 76+/-7% with LOS and 79+/-9% with TEL. With 200 mg OD LOS, trough blockade was 54+/-14%, but with 100 mg BID it increased to 77+/-8% (P<0.01). Telmisartan (160 mg OD and 80 mg BID) produced a comparable effect. Thus, at their maximal recommended doses, neither LOS nor TEL blocks the RAS for 24 hours; hence, the addition of an ACE inhibitor provides an additional blockade. A 24-hour blockade can be achieved with an angiotensin antagonist alone, provided higher doses or a BID regimen is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. In some tissues, a decrease in the number of cell surface receptors and alterations of the receptor coupling have been proposed as possible mechanisms mediating the deleterious effects of bacterial endotoxin in septic shock. 2. The effects of bacterial lipopolysaccharide (Escherichia coli 0111-B4; LPS) on vascular angiotensin II and vasopressin receptors have been examined in cultured aortic smooth muscle cells (SMC) of the rat by use of radioligand binding techniques. 3. In vascular SMC exposed to 1 micrograms ml-1 endotoxin for 24 h, a significant increase in angiotensin II binding was found. The change in [125I]-angiotensin II binding corresponded to an increase in the number of receptors whereas the affinity of the receptors was not affected by LPS. In contrast, no change in [3H]-vasopressin binding was observed. 4. The pharmacological characterization of angiotensin II binding sites in control and LPS-exposed cells demonstrated that LPS induced an increase in the AT1 subtype of the angiotensin II receptors. Receptor coupling as evaluated by measuring total inositol phosphates was not impaired by LPS. 5. The effect of LPS on the angiotensin II receptor was dose-, time- and protein-synthesis dependent and was associated with an increased expression of the receptor gene. 6. The ability of LPS to increase angiotensin II binding in cultured vascular SMC was independent of the endotoxin induction of NO-synthase. 7. These results suggest that, besides inducing factors such as cytokines and NO-synthase, endotoxin may enhance the expression of cell surface receptors. The surprising increase in angiotensin II binding in LPS exposed VSM cells may represent an attempt by the cells to compensate for the decreased vascular responsiveness. It may also result from a non-specific LPS-related induction of genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin-angiotensin system is a major contributor to the pathophysiology of cardiovascular diseases such as congestive heart failure and hypertension. Antagonizing angiotensin (Ang) II at the receptor site may produce fewer side effects than inhibition of the promiscuous converting enzyme. The present study was designed to assess in healthy human subjects the effect of LRB081, a new orally active AT1-receptor antagonist, on the pressor action of exogenous Ang II. At the same time, plasma hormones and drug levels were monitored. At 1-week intervals and in a double-blind randomized fashion, 8 male volunteers received three doses of LRB081 (10, 40, and 80 mg) and placebo. Blood pressure (BP) was measured at a finger by photoplethysmograph. The peak BP response to intravenous injection of a standard dose of Ang II was determined before and for < or = 24 h after administration of an oral dose of LRB081 or placebo. After drug administration, the blood BP response to Ang II was expressed in percent of the response before drug administration. At the same time, plasma renin activity (PRA), Ang II, aldosterone, catecholamine (radioassays), and drug levels (by high-performance liquid chromatography) were monitored. After LRB081 administration, a dose dependent inhibition of the BP response to Ang II was observed. Maximal inhibition of the systolic BP response was 54 +/- 3 (mean +/- SEM), 63 +/- 2, and 93 +/- 1% with 10, 40, and 80 mg LRB081, respectively. The time to peak was 3 h for 6 subjects and 4 and 6 h for 2 others. Preliminary plasma half-life (t1/2) was calculated at 2 h. With the highest dose, the inhibition remained significant for 24 h (31 +/- 5%, p < 0.05). Maximal BP-blocking effect and maximal plasma drug level coincided, suggesting that the unmetabolized LRB081 is responsible for the antagonistic effect. PRA and Ang II increased dose dependently after LRB081 intake. Aldosterone, epinephrine, and norepinephrine concentrations remained unchanged. No clinically significant adverse reaction was observed during the study. LRB081 is a well-tolerated, orally active, potent, and long-acting Ang II receptor antagonist. Unlike in the case of losartan, no active metabolite of LRB081 has been shown to be responsible for the main effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.