420 resultados para aldehyde dehydrogenases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malondialdehyde (MDA) is a natural and widespread genotoxin. Given its potentially deleterious effects, it is of interest to establish the identities of the cell types containing this aldehyde. We used in situ chemical trapping with 2-thiobarbituric acid and mass spectrometry with a deuterated standard to characterize MDA pools in the vegetative phase in Arabidopsis thaliana. In leaves, MDA occurred predominantly in the intracellular compartment of mesophyll cells and was enriched in chloroplasts where it was derived primarily from triunsaturated fatty acids (TFAs). High levels of MDA (most of which was unbound) were found within dividing cells in the root tip cell proliferation zone. The bulk of this MDA did not originate from TFAs. We confirmed the localization of MDA in transversal root sections. In addition to MDA in proliferating cells near the root tip we found evidence for the presence of MDA in pericyle cells. Remodeling of non-TFA-derived MDA pools occurred when seedlings were infected with the fungus Botrytis cinerea. Treatment of uninfected seedlings with mediators of plant stress responses (jasmonic acid or salicylic acid) increased seedling MDA levels over 20-fold. In summary, major pools of MDA are associated with cell division foci containing stem cells. The aldehyde is pathogen-inducible in these regions and its levels are increased by cellular mediators that impact defense and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 µM, IC50 = 0.33 mM and 70 µM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION The quality of fats and oils used for frying is as important as the quality of the final product since during the frying process oxidization by-products are formed and become part of the diet, being potentially harmful for the consumers' health. OBJECTIVE To determine the effects of thermo-oxidised fats and oils on the oxidization of plasma lipoproteins inexperimental rats. METHODS Determination by means of spectrophotometric techniques of those substances reacting with thiobarbituric acid and total cholesterol (enzymatic method) in the sera of 40 Wistar rats that consumed crude thermooxidised oils and fats with different levels of malonil aldehyde(MDA) for 30 days. RESULTS The group of rats receiving a diet with thermooxidised oils and fats experienced significant increases in MDA plasma levels throughout the study period, lipid peroxidation being higher with increasing MDA content (p < 0.05) regardless the type of fat compound consumed. However, those rats receiving crude oils and fats kept plasma levels of lipidic peroxides without significant changes throughout the experimental period (p > 0.05). By contrast, cholesterol levels increased towards the end of the experimental period in both the rats consuming crude fats and those consuming thermo-oxidised fats (p < 0.05). CONCLUSIONS Consumption of oils and fats submitted to repeat thermal heating has an influence on plasma lipidic peroxidation, which becomes higher with increasing number of heating processes applied, so that it would advisable not to abuse of reheating the oils used for frying foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human heart failure (HF) peroxisome proliferator-activated receptor alpha (PPAR alpha) is downregulated and consequently, the expression of genes involved in fatty acid oxidation repressed. The L162V (rs1800206) is a functional polymorphism of the human PPAR alpha gene (PPARA). In the present study we have investigated whether this polymorphism is associated with the development of stage C of HF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytochrome-interacting factor PIF3 has been proposed to act as a positive regulator of chloroplast development. Here, we show that the pif3 mutant has a phenotype that is similar to the pif1 mutant, lacking the repressor of chloroplast development PIF1, and that a pif1pif3 double mutant has an additive phenotype in all respects. The pif mutants showed elevated protochlorophyllide levels in the dark, and etioplasts of pif mutants contained smaller prolamellar bodies and more prothylakoid membranes than corresponding wild-type seedlings, similar to previous reports of constitutive photomorphogenic mutants. Consistent with this observation, pif1, pif3, and pif1pif3 showed reduced hypocotyl elongation and increased cotyledon opening in the dark. Transfer of 4-d-old dark-grown seedlings to white light resulted in more chlorophyll synthesis in pif mutants over the first 2 h, and analysis of gene expression in dark-grown pif mutants indicated that key tetrapyrrole regulatory genes such as HEMA1 encoding the rate-limiting step in tetrapyrrole synthesis were already elevated 2 d after germination. Circadian regulation of HEMA1 in the dark also showed reduced amplitude and a shorter, variable period in the pif mutants, whereas expression of the core clock components TOC1, CCA1, and LHY was largely unaffected. Expression of both PIF1 and PIF3 was circadian regulated in dark-grown seedlings. PIF1 and PIF3 are proposed to be negative regulators that function to integrate light and circadian control in the regulation of chloroplast development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed a rapid and simple assay for the coupled in vitro synthesis of oxylipins using free unsaturated fatty acids as substrates. Reactions were catalysed with extracts expressed from living plant tissues. Preliminary experiments involving the cell free transformation of fatty acid hydroperoxides revealed that storage or pretreatment of the plant extract rapidly altered its capacity to catalyse the generation of oxidised fatty acid derivatives. This could reflect changes in oxylipin generation that might take place in situ in damaged plant cells during herbivory. All subsequent experiments were performed without dilution, titration or any other modification of the plant extract prior to its addition to the assay system. The assays were used to study, for the first time, tissue-specific differences in fatty acid transformation to divinyl ethers. Root tissues from tomato efficiently catalysed the formation of corneleic and colnelenic acids from linoleic acid and linolenic acids, respectively, whereas leaf, hypocotyl and cotyledon extracts did not promote the formation of these compounds. We observed the efficient generation of 9-oxo-nonanoic acid from the substrate linolenic acid and speculate that this aldehyde could arise either from the action of hydroperoxide lyase on 9-hydroperoxylinolenic acid or by a novel route involving cleavage of colnelenic acid which was also present among the products of the reaction. A potential role of divinyl ethers as substrates for the generation of toxic aldehydes is discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We have investigated the expression and regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in gastric cancer. EXPERIMENTAL DESIGN: Clinical gastric adenocarcinoma samples were analyzed by immunohistochemistry and quantitative real-time PCR for protein and mRNA expression of 15-PGDH and for methylation status of 15-PGDH promoter. The effects of interleukin-1beta (IL-1beta) and epigenetic mechanisms on 15-PGDH regulation were assessed in gastric cancer cell lines. RESULTS: In a gastric cancer cell line with a very low 15-PGDH expression (TMK-1), the 15-PGDH promoter was methylated and treatment with a demethylating agent 5-aza-2'-deoxycytidine restored 15-PGDH expression. In a cell line with a relatively high basal level of 15-PGDH (MKN-28), IL-1beta repressed expression of 15-PGDH mRNA and protein. This effect of IL-1beta was at least in part attributed to inhibition of 15-PGDH promoter activity. SiRNA-mediated knockdown of 15-PGDH resulted in strong increase of prostaglandin E(2) production in MKN-28 cells and increased cell growth of these cells by 31% in anchorage-independent conditions. In clinical gastric adenocarcinoma specimens, 15-PGDH mRNA levels were 5-fold lower in gastric cancer samples when compared with paired nonneoplastic tissues (n = 26) and 15-PGDH protein was lost in 65% of gastric adenocarcinomas (n = 210). CONCLUSIONS: 15-PGDH is down-regulated in gastric cancer, which could potentially lead to accelerated tumor progression. Importantly, our data indicate that a proinflammatory cytokine linked to gastric carcinogenesis, IL-1beta, suppresses 15-PGDH expression at least partially by inhibiting promoter activity of the 15-PGDH gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, glyoxalated alkaline lignins with a non-volatile and non-toxic aldehyde, which can be obtained from several natural resources, namely glyoxal, were prepared and characterized for its use in wood adhesives. The preparation method consisted of the reaction of lignin with glyoxal under an alkaline medium. The influence of reaction conditions such as the molar ratio of sodium hydroxide-to-lignin and reaction time were studied relative to the properties of the prepared adducts. The analytical techniques used were FTIR and 1H-NMR spectroscopies, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Results from both the FTIR and 1H-NMR spectroscopies showed that the amount of introduced aliphatic hydroxyl groups onto the lignin molecule increased with increasing reaction time and reached a maximum value at 10 h, and after they began to decrease. The molecular weights remained unchanged until 10 h of reaction time, and then started to increase, possibly due to the repolymerization reactions. DSC analysis showed that the glass transition temperature (Tg) decreased with the introduction of glyoxal onto the lignin molecule due to the increase in free volume of the lignin molecules. TGA analysis showed that the thermal stability of glyoxalated lignin is not influenced and remained suitable for wood adhesives. Compared to the original lignin, the improved lignin is reactive and a suitable raw material for adhesive formula

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epoxidization is an interesting way to develop a new application of lignin and therefore to improve its application potential. In this work, kraft lignin-based epoxy resins were obtained by the epoxidization reaction, using the kraft lignin recovered directly from pulping liquor and modified by a methylolation reaction. The methylolated lignins were obtained by the reaction of original kraft lignin with formaldehyde and glyoxal, which is a less volatile and less toxic aldehyde. 1H-NMR spectroscopy showed that methylolated kraft lignin has more hydroxymethyl groups than glyoxalated kraft lignin. For the epoxidization reaction we studied the influence of the lignin:NaOH (w/w) ratio, temperature, and time of the reaction on the properties of the prepared epoxidized lignins. The structures of lignin-based epoxy resins were followed by epoxy index test and FTIR spectroscopy. Optimal conditions were obtained for lignin-based epoxy resin produced at lignin/NaOH = 1/3 at 70 ºC for 3h. Thermogravimetry analysis (TGA) revealed that the epoxidization enhances the thermal stability of lignins and may allow a wider temperature range for applications with lignin epoxy-PF blends

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Transthoracic echocardiography (TTE) has been used clinically to disobstruct venous drainage cannula and to optimise placement of venous cannulae in the vena cava but it has never been used to evaluate performance capabilities. Also, little progress has been made in venous cannula design in order to optimise venous return to the heart lung machine. We designed a self-expandable Smartcanula (SC) and analysed its performance capability using echocardiography. METHODS: An epicardial echocardiography probe was placed over the SC or control cannula (CTRL) and a Doppler image was obtained. Mean (V(m)) and maximum (V(max)) velocities, flow and diameter were obtained. Also, pressure drop (DeltaP(CPB)) was obtained between the central venous pressure and inlet to venous reservoir. LDH and Free Hb were also compared in 30 patients. Comparison was made between the two groups using the student's t-test with statistical significance established when p<0.05. RESULTS: Age for the SC and CC groups were 61.6+/-17.6 years and 64.6+/-13.1 years, respectively. Weight was 70.3+/-11.6 kg and 72.8+/-14.4 kg, respectively. BSA was 1.80+/-0.2 m(2) and 1.82+/-0.2 m(2), respectively. CPB times were 114+/-53 min and 108+/-44 min, respectively. Cross-clamp time was 59+/-15 min and 76+/-29 min, respectively (p=NS). Free-Hb was 568+/-142 U/l versus 549+/-271 U/l post-CPB for the SC and CC, respectively (p=NS). LDH was 335+/-73 mg/l versus 354+/-116 mg/l for the SC and CC, respectively (p=NS). V(m) was 89+/-10 cm/s (SC) versus 63+/-3 cm/s (CC), V(max) was 139+/-23 cm/s (SC) versus 93+/-11 cm/s (CC) (both p<0.01). DeltaP(CPB) was 30+/-10 mmHg (SC) versus 43+/-13 mmHg (CC) (p<0.05). A Bland-Altman test showed good agreement between the two devices used concerning flow rate calculations between CPB and TTE (bias 300 ml+/-700 ml standard deviation). CONCLUSIONS: This novel Smartcanula design, due to its self-expanding principle, provides superior flow characteristics compared to classic two stage venous cannula used for adult CPB surgery. No detrimental effects were observed concerning blood damage. Echocardiography was effective in analysing venous cannula performance and velocity patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effect of gossypol on survival and reproduction of the zoophytophagous stinkbug Podisus nigrispinus (Dallas). Gossypol is a sesquiterpene aldehyde found in cotton plants conferring resistance against herbivory. Although the effect of this sesquiterpenoid on insect pests of cotton is known, the interaction of this compound with zoophytophagous predators such as Podisus nigrispinus (Dallas) (Hemiptera, Pentatomidae) has not been studied so far. Thus, the objective of this study was to evaluate the effect of the purified gossypol on nymphs and adults of P. nigrispinus. Nymphs and adults of this predator were fed on Tenebrio molitor pupae and supplemented with solutions of gossypol at concentrations of 0.00, 0.05, 0.10, and 0.20% (w/v) during the nymphal and adult stages or, only during the adult stage of P. nigrispinus. The nymphal stage of the predator was, on average, two days longer when suplemmented with gossypol. Emerged adults had lower fecundity and egg hatching, especially at the highest gossypol concentration (0.20%) ingested during the nymphal and adult stages. However, this predator was not affected when it ingested the compound only during the adult stage. P. nigrispinus can have delayed nymphal development and lower reproductive performance when ingesting the gossypol during the nymphal and adult stages, but only at higher concentrations of gossypol than that produced by cotton plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, wedescribe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptidesKKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol(cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followedby coupling to an aminooxy-functionalized carbohydrate template. After purification, the multivalent display systems were obtainedin high purities (90–98%) and in good yields (42–64%). These compounds were tested against plant and human pathogenic bacteriaand screened for their cytotoxicity on eukaryotic cells. They showed lower MIC values than the parent peptides against the bacteriaanalyzed. In particular, the carbopeptides derived from cDTE and Galp, which contained two or four copies of BP100, respectively,were 2- to 8-fold more active than the monomeric peptide against the phytopathogenic bacteria. These results suggest thatpreassembling antimicrobial peptides to multimeric structures is not always associated with a significant improvement of theactivity. In contrast, the carbopeptides synthesized were active against human red blood cells pointing out that peptide preassemblyis critical for the hemolytic activity. Notably, peptide preassembly resulted in an enhanced bactericidal effect

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.