917 resultados para acceleration signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational optimisation of clinically important electrocardiogram signal features, within a single heart beat, using a Markov-chain Monte Carlo (MCMC) method is undertaken. A detailed, efficient data-driven software implementation of an MCMC algorithm has been shown. Initially software parallelisation is explored and has been shown that despite the large amount of model parameter inter-dependency that parallelisation is possible. Also, an initial reconfigurable hardware approach is explored for future applicability to real-time computation on a portable ECG device, under continuous extended use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of the hand is vital in working life due to the grabbing and pinching it performs. Spherical grip is the most commonly used, due to similarity to the gripping of a computer mouse. Knowledge of its execution and the involved elements is essential. Analysis of this exertion with surface electromyography devices (to register muscular activity) and accelerometer devices (to register movement values ) can provide multiple variables. Six subjects performed ball gripping and registered real-time electromyography (thenar region, hypothenar region, first dorsal interosseous, flexors of the wrist, flexor carpi ulnaris and extensors of the wrist muscles) and accelerometer (thumb, index, middle, ring, pinky and palm) values. The obtained data was resampled “R software” and processed “Matlab Script” based on an automatic numerical sequence recognition program. Electromyography values were normalized on the basis of maximum voluntary contraction, whilst modular values were calculated for the acceleration vector. After processing and analysing the obtained data and signal, it was possible to identify five stages of movement in accordance with the module vector from the palm. The statistical analysis of the variables was descriptive: average and standard deviations. The outcome variables focus on the variations of the modules of the vector (between the maximum and minimum values of each module and phase) and the maximum values of the standardized electromyography of each muscle. Analysis of movement through accelerometer and electromyography variables can give us an insight into the operation of spherical grip. The protocol and treatment data can be used as a system to complement existing assessments in the hand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stop-signal paradigm is increasingly being used as a probe of response inhibition in basic and clinical neuroimaging research. The critical feature of this task is that a cued response is countermanded by a secondary ‘stop-signal’ stimulus offset from the first by a ‘stop-signal delay’. Here we explored the role of task difficulty in the stop-signal task with the hypothesis that what is critical for successful inhibition is the time available for stopping, that we define as the difference between stop-signal onset and the expected response time (approximated by reaction time from previous trial). We also used functional magnetic resonance imaging (fMRI) to examine how the time available for stopping affects activity in the putative right inferior frontal gyrus and presupplementary motor area (right IFG-preSMA) network that is known to support stopping. While undergoing fMRI scanning, participants performed a stop-signal variant where the time available for stopping was kept approximately constant across participants, which enabled us to compare how the time available for stopping affected stop-signal task difficulty both within and between subjects. Importantly, all behavioural and neuroimaging data were consistent with previous findings. We found that the time available for stopping distinguished successful from unsuccessful inhibition trials, was independent of stop-signal delay, and affected successful inhibition depending upon individual SSRT. We also found that right IFG and adjacent anterior insula were more strongly activated during more difficult stopping. These findings may have critical implications for stop-signal studies that compare different patient or other groups using fixed stop-signal delays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have collaboratively used a graphical language to describe their shared knowledge of a small domain of mathematics, which has in turn scaffolded their re-development of a related curriculum for mathematics acceleration. This collaborative use of the graphical language is reported as a simple descriptive case study. This leads to an evaluation of the graphical language’s usefulness as a tool to support the articulation of the structure of mathematics knowledge. In turn, implications are drawn for how the graphical language may be utilised as the detail of the curriculum is further elaborated and communicated to teachers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Techniques are presented for enhancing weak Raman scattering signals for rapid yet accurate substance detection. Novel surfaces that allow signal enhancement quantification are described as are eye-safe methodologies that maximize the stand-off Raman detection range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale), the Quadratic Scoring Rule (a post-wagering procedure), and the Matching Probability (MP; a generalization of the no-loss gambling method). We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory (SDT). We find that the MP provides better results in that respect. We conclude that MP is particularly well suited for studies of confidence that use SDT as a theoretical framework.