925 resultados para Wood biodegradation
Resumo:
The research analyzes product quality from a customer perspective in the case of the wood products industry. Of specific interest is to understand better how environmental quality is perceived from a customer perspective. The empirical material used comprises four data-sets from Finland, Germany and the UK, collected during 1992 2004. The methods consist of a set of quantitative statistical analyses. The results indicate that perceived quality from a customer perspective can be presented using a multidimensional and hierarchical construct with tangible and intangible dimensions, that is common to different markets and products. This applies in the case of wood products but also more generally at least for some other construction materials. For wood products, tangible product quality has two main sub-dimensions: technical quality and appearance. For product intangibles, a few main quality dimensions seem be detectable: Quality of intangibles related to the physical product, such as environmental issues and product-related information, supplier-related characteristics, and service and sales personnel behavior. Environmental quality and information are often perceived as being inter-related. Technical performance and appearance are the most important considerations for customers in the case of wood products. Organizational customers in particular also clearly consider certain intangible quality dimensions to be important, such as service and supplier reliability. The high technical quality may be considered as a license to operate , but product appearance and intangible quality provide potential for differentiation for attracting certain market segments. Intangible quality issues are those where Nordic suppliers underperform in comparison to their Central-European competitors on the important German markets. Environmental quality may not have been used to its full extent to attract customers. One possibility is to increase the availability of the environment-related information, or to develop environment-related product characteristics to also provide some individual benefits. Information technology provides clear potential to facilitate information-based quality improvements, which was clearly recognized by Finnish forest industry already in the early 1990s. The results indeed indicate that wood products markets are segmented with regard to quality demands
Resumo:
Linear optimization model was used to calculate seven wood procurement scenarios for years 1990, 2000 and 2010. Productivity and cost functions for seven cutting, five terrain transport, three long distance transport and various work supervision and scaling methods were calculated from available work study reports. All method's base on Nordic cut to length system. Finland was divided in three parts for description of harvesting conditions. Twenty imaginary wood processing points and their wood procurement areas were created for these areas. The procurement systems, which consist of the harvesting conditions and work productivity functions, were described as a simulation model. In the LP-model the wood procurement system has to fulfil the volume and wood assortment requirements of processing points by minimizing the procurement cost. The model consists of 862 variables and 560 restrictions. Results show that it is economical to increase the mechanical work in harvesting. Cost increment alternatives effect only little on profitability of manual work. The areas of later thinnings and seed tree- and shelter wood cuttings increase on cost of first thinnings. In mechanized work one method, 10-tonne one grip harvester and forwarder, is gaining advantage among other methods. Working hours of forwarder are decreasing opposite to the harvester. There is only little need to increase the number of harvesters and trucks or their drivers from today's level. Quite large fluctuations in level of procurement and cost can be handled by constant number of machines, by alternating the number of season workers and by driving machines in two shifts. It is possible, if some environmental problems of large scale summer time harvesting can be solved.
Resumo:
In the first part of the study, the selected wood and fiber properties were investigated in terms of their occurrence and variation in wood, as well as their relevance from the perspective of thermomechanical pulping process and related end-products. It was concluded that the most important factors were the fiber dimensions, juvenile wood content, and in some cases, the content of heartwood being associated with extremely dry wood with low permeability in spruce. With respect to the above properties, the following three pulpwood assortments of which pulping potential was assumed to vary were formed: wood from regeneration cuttings, first-thinnings wood, and sawmill chips. In the experimental part of the study the average wood and fiber characteristics and their variation were determined for each raw material group prior to pulping. Subsequently, each assortment - equaling about 1500 m3 roundwood - was pulped separately for a 24 h period, at constant process conditions. The properties of obtained newsgrade thermomechanical pulps were then determined. Thermomechanical pulping (TMP) from sawmill chips had the highest proportion of long fibers, smallest proportion of fines, and had generally the coarsest and longest fibers. TMP from first-thinnings wood was just the opposite, whereas that from regeneration cuttings fell in between the above two extremes. High proportion of dry heartwood in wood originating from regeneration cuttings produced a slightly elevated shives content. However, no differences were found in pulp specific energy consumption. The obtained pulp tear index was clearly best in TMP made from sawmill chips and poorest in pulp from first-thinnings wood, which had generally inferior strength properties. No dramatical differences in any of the strength properties were found between pulp from sawmill residual wood and regeneration cuttings. Pulp optical properties were superior in TMP from first-thinnings. Unexpectedly, no noticeable differences, which could be explained with fiber morphology, were found in sheet density, bulk, air permeance or roughness between the three pulps. The most important wood quality factors in this study were the fiber length, fiber cross-sectional dimensions and percentage juvenile wood. Differences found in the quality of TMP manufactured from the above spruce assortments suggest that they could be segregated and pulped separately to obtain specific product characteristics, i.e., for instance tailor-made end-products, and to minimize unnecessary variation in the raw material quality, and hence, pulp quality.
Resumo:
Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid,2,3-dihydroxybenzoic acid, and catechol, which was further degraded by ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.
Resumo:
Polyphenolic compounds occurring naturally in knotwood of plants are known to have antimicrobial effects. The knots (i.e. the branch bases inside tree stems) and outer branches in pine trees contain a remarkably high concentration of phenolic stilbenes, while lignans are the major phenolic constituents of spruce knots. Large amount of these phenolic compounds can be extracted from wood knots at pulp and paper mills where their presence is undesirable. In Finland, marinating of broiler meat is done not only to increase or add value to the meat, but also to enhance the safety and shelf-life. These products are usually packed under a modified atmosphere for further protection against spoilage microorganisms. However, studies have revealed that addition of marinades to poultry products do not have an inhibitory effect on either some psychrotrophic anaerobic bacteria, such as Brochothrix thermosphacta or lactic acid bacteria associated with spoilage. Also, the activity of pathogenic Campylobacter jejuni is not affected by marinating. The objective of this study was to investigate the inhibitory and lethal activities of extracts from spruce (Picea spp.) and pine (Pinus spp.) knotwood and outer branches that are dissolved in ethanol against the spoilage microorganisms in modified atmosphere packaged marinated broiler products. Modified atmosphere packaged broiler products were separately inoculated with ‘normal’ marinades, marinades with 70% ethanol, marinades with a mixture of spruce and pine extracts dissolved in 70% ethanol or mixture of spruce and pine extracts in powder form. The bacterial colony forming units per gram obtained from each of the samples were analysed on de Man Rogosa and Sharpe agar at days 1, 6, 12 and 15. The results showed that there were significant differences in bacterial colony forming units per gram (P <0.05) between packages with ‘normal’ marinades and packages with extracts added to their marinades on the 12th and 15th day. It can be concluded that the addition of extracts from spruce and pine knotwood to marinades significantly retarded growth of spoilage microorganisms during the 15 day test period. However further research is warranted to characterise and establish the safety and suitability of the compound(s) in spruce and pine knotwood extracts that are responsible for inhibitory or lethal activity against the microbes that may be present in marinated poultry meat.
Resumo:
An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.
Resumo:
Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by CC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to -CH2-OH which is further converted to -CHO and -COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.
Resumo:
The gasification of charcoal spheres in an atmosphere of carbon-dioxide-nitrogen mixture involving diffusion and reactions in the pores is modelled and the results are compared with experiments of Standish and Tanjung and those performed in the laboratory on wood-char spheres to determine the effects of diameter, density, gas composition and flow. The results indicate that the conversion time, t(c) approximately d1.03 for large particles (> 5 mm), departing substantially from the t(c) approximately d2 law valid for diffusion limited conditions. The computational studies indicate that the kinetic limit for the particle is below 100 mum. The conversion time varies inversely as the initial char density as expected in the model. Predictions from the model show that there is no significant change in conversion time up to 60% N2 consistent with the CO2-N2 experiments. The variation of diameter and density with time are predicted. The peculiar dependence of conversion time on flow velocity in the experiments is sought to be explained by opposing free and forced convection heat transfer and the attempt is only partly successful. The studies also indicate that the dependence on the CO concentration with low CO2 is significant, indicating the need for multistep reaction mechanism against the generally accepted single-step reaction.
Resumo:
Pseudomonas maltophilia CSV89, a bacterium isolated from soil in our laboratory, grows on 1-naphthoic acid as the sole source of carbon and energy. To elucidate the pathway for degradation of 1-naphthoic acid, the metabolites were isolated from spent medium, purified by TLC, and characterized by gas chromatography-mass spectrometry. The involvement of various metabolites as intermediates in the pathway was established by demonstrating relevant enzyme activities in cell-free extracts, oxygen uptake and transformation of metabolites by the whole cells. The results obtained from such studies suggest that the degradation of 1-naphthoic acid is initiated by double hydroxylation of the aromatic ring adjacent to the one bearing the carboxyl group, resulting in the formation of 1,2-dihydroxy-8-carboxynaphthalene. The resultant diol was oxidized via 3-formyl salicylate, 2-hydroxyisophthalate, salicylate and catechol to TCA cycle intermediates.
Resumo:
The utility of a soil microbe, namely Bacillus polymyxa, in the removal of organic reagents such as dodecylamine, ether diamine, isopropyl xanthate and sodium oleate from aqueous solutions is demonstrated. Time-bound removal of the above organic reagents from an alkaline solution was investigated under different experimental conditions during bacterial growth and in the presence of metabolites by frequent monitoring of residual concentrations as a function of time, reagent concentration and cell density. The stages and mechanisms in the biodegradation process were monitored through UV-visible and FTIR spectroscopy. Surface chemistry of the bacterial cells as well as the biosorption tendency for various organics were also established through electrokinetic and adsorption density measurements. Both the cationic amines were found to be biosorbed followed by their degradation through bacterial metabolism. The presence of the organic reagents promoted bacterial growth through effective bacterial utilization of nitrogen and carbon from the organics. Under optimal conditions, complete degradation and bioremoval of all the organics could be achieved.
Resumo:
The increasing industrial utilization of polyacrylamide to assist water clarification, sludge conditioning, papermaking, and secondary oil recovery leads to environmental pollution. In this work, an acrylamide degrading bacterium was isolated from paper mill effluent at Charan mahadevi, Tamilnadu, India. The minimal medium containing acrylamide (40 mM) served as a sole source of carbon and nitrogen for acrylamide degrading bacteria. The bacterial strain has grown well in 40 mM acrylamide at pH (6-7) at 30 degrees C. Within 24-48 h acrylamide was converted into acrylic acid and other metabolites. Based on biochemical characteristics and 16S rRNA gene sequence, the bacterial strain was identified as Gram negative, diplobacilli Moraxella osloensis MSU11. The acrylamide hydrolyzing bacterial enzyme acrylamidase was purified by HPLC. The enzyme molecular weight was determined to be approximately 38 kDa by SDS-PAGE using reference enzyme Pectinase. These results show that M. osloensis MSU11 has a potential to degrade the acrylamide present in the environment. (C) 2013 Elsevier Ltd. All rights reserved.