916 resultados para Wavelet Transform


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a review of perceptual image quality metrics and their application to still image compression. The review describes how image quality metrics can be used to guide an image compression scheme and outlines the advantages, disadvantages and limitations of a number of quality metrics. We examine a broad range of metrics ranging from simple mathematical measures to those which incorporate full perceptual models. We highlight some variation in the models for luminance adaptation and the contrast sensitivity function and discuss what appears to be a lack of a general consensus regarding the models which best describe contrast masking and error summation. We identify how the various perceptual components have been incorporated in quality metrics, and identify a number of psychophysical testing techniques that can be used to validate the metrics. We conclude by illustrating some of the issues discussed throughout the paper with a simple demonstration. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stock market indices SMIs are important measures of financial and economical performance. Considerable research efforts during the last years demonstrated that these signals have a chaotic nature and require sophisticated mathematical tools for analyzing their characteristics. Classical methods, such as the Fourier transform, reveal considerable limitations in discriminating different periods of time. This paper studies the dynamics of SMI by combining the wavelet transform and the multidimensional scaling MDS . Six continuous wavelets are tested for analyzing the information content of the stock signals. In a first phase, the real Shannon wavelet is adopted for performing the evaluation of the SMI dynamics, while their comparison is visualized by means of the MDS. In a second phase, the other wavelets are also tested, and the corresponding MDS plots are analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides a two-stage stochastic programming approach for the development of optimal offering strategies for wind power producers. Uncertainty is related to electricity market prices and wind power production. A hybrid intelligent approach, combining wavelet transform, particle swarm optimization and adaptive-network-based fuzzy inference system, is used in this paper to generate plausible scenarios. Also, risk aversion is explicitly modeled using the conditional value-at-risk methodology. Results from a realistic case study, based on a wind farm in Portugal, are provided and analyzed. Finally, conclusions are duly drawn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proceedings of the Information Technology Applications in Biomedicine, Ioannina - Epirus, Greece, October 26-28, 2006

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ao longo dos últimos anos, acompanhada da evolução tecnológica, da dificuldade da inspeção visual e da consciencialização dos efeitos de uma má inspeção, verificou-se uma maior sensibilidade para a importância da monitorização estrutural, principalmente nas grandes infra-estruturas de engenharia civil. Os sistemas de monitorização estrutural permitem o acompanhamento contínuo do comportamento de uma determinada estrutura de tal forma que com os dados obtidos, é possível avaliar alterações no comportamento da mesma. Com isso, tem-se desenvolvido e implementado estratégias de identificação de danos estruturais com o intuito de aumentar a fiabilidade estrutural e evitar precocemente que alterações na condição da estrutura possam evoluir para situações mais severas. Neste contexto, a primeira parte desta dissertação consiste numa introdução à monitorização estrutural e à deteção de dano estrutural. Relativamente à monitorização, são expostos os seus objetivos e os princípios da sua aplicação. Conjuntamente são apresentados e descritos os principais sensores e são explicadas as funcionalidades de um sistema de aquisição de dados. O segundo tema aborda a importância da deteção de dano introduzindo os métodos estudados neste trabalho. Destaca-se o método das linhas de influência, o método da curvatura dos modos de vibração e o método da transformada de wavelet. Na segunda parte desta dissertação são apresentados dois casos de estudo. O primeiro estudo apresenta uma componente numérica e uma componente experimental. Estuda-se um modelo de viga que se encontra submetida a vários cenários de dano e valida-se a capacidade do método das linhas de influência em detetar e localizar essas anomalias. O segundo estudo consiste na modelação numérica de uma ponte real, na posterior simulação de cenários de dano e na análise comparativa da eficácia de cada um dos três métodos de deteção de dano na identificação e localização dos danos simulados. Por último, são apresentadas as principais conclusões deste trabalho e são sugeridos alguns tópicos a explorar na elaboração de trabalhos futuros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The autonomic nervous system (ANS) is known to be an important modulator in the pathogenesis of paroxysmal atrial fibrillation (PAF). Changes in ANS control of heart rate variability (HRV) occur during orthostatism to maintain cardiovascular homeostasis. Wavelet transform has emerged as a useful tool that provides time-frequency decomposition of the signal under investigation, enabling intermittent components of transient phenomena to be analyzed. AIM: To study HRV during head-up tilt (HUT) with wavelet transform analysis in PAF patients and healthy individuals (normals). METHODS: Twenty-one patients with PAF (8 men; age 58 +/- 14 yrs) were examined and compared with 21 normals (7 men, age 48 +/- 12 yrs). After a supine resting period, all subjects underwent passive HUT (60 degrees) while in sinus rhythm. Continuous monitoring of ECG and blood pressure was carried out (Task Force Monitor, CNSystems). Acute changes in RR-intervals were assessed by wavelet analysis and low-frequency power (LF: 0.04-0.15 Hz), high-frequency power (HF: 0.15-0.60 Hz) and LF/HF (sympathovagal) were calculated for 1) the last 2 min of the supine period; 2) the 15 sec of tilting movement (TM); and 3) the 1st (TT1) and 2nd (TT2) min of HUT. Data are expressed as means +/- SEM. RESULTS: Baseline and HUT RR-intervals were similar for the two groups. Supine basal blood pressure was also similar for the two groups, with a sustained increase in PAF patients, and a decrease followed by an increase and then recovery in normals. Basal LF, HF and LF/ HF values in PAF patients were 632 +/- 162 ms2, 534 +/- 231 ms2 and 1.95 +/- 0.39 respectively, and 1058 +/- 223 ms2, 789 +/- 244 ms2 and 2.4 +/- 0.36 respectively in normals (p = NS). During TM, LF, HF and LF/HF values for PAF patients were 747 +/- 277 ms2, 387 +/- 94 ms2 and 2.9 +/- 0.6 respectively, and 1316 +/- 315 ms2, 698 +/- 148 ms2 and 2.8 +/- 0.6 respectively in normals (p < 0.05 for LF and HF). During TF1, LF, HF and LF/ HF values for PAF patients were 1243 +/- 432 ms2, 302 +/- 88 ms2 and 7.7 +/- 2.4 respectively, and 1992 +/- 398 ms2, 333 +/- 76 ms2 and 7.8 +/- 0.98 respectively for normals (p < 0.05 for LF). During TF2, LF, HF and LF/HF values for PAF patients were 871 +/- 256 ms2, 242 +/- 51 ms2 and 4.7 +/- 0.9 respectively, and 1263 +/- 335 ms2, 317 +/- 108 ms2 and 8.6 +/- 0.68 respectively for normals (p < 0.05 for LF/HF). The dynamic profile of HRV showed that LF and HF values in PAF patients did not change significantly during TM or TT2, and LF/HF did not change during TM but increased in TT1 and TT2. CONCLUSION: Patients with PAF present alterations in HRV during orthostatism, with decreased LF and HF power during TM, without significant variations during the first minutes of HUT. These findings suggest that wavelet transform analysis may provide new insights when assessing autonomic heart regulation and highlight the presence of ANS disturbances in PAF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

\The idea that social processes develop in a cyclical manner is somewhat like a `Lorelei'. Researchers are lured to it because of its theoretical promise, only to become entangled in (if not wrecked by) messy problems of empirical inference. The reasoning leading to hypotheses of some kind of cycle is often elegant enough, yet the data from repeated observations rarely display the supposed cyclical pattern. (...) In addition, various `schools' seem to exist which frequently arrive at di erent conclusions on the basis of the same data." (van der Eijk and Weber 1987:271). Much of the empirical controversies around these issues arise because of three distinct problems: the coexistence of cycles of di erent periodicities, the possibility of transient cycles and the existence of cycles without xed periodicity. In some cases, there are no reasons to expect any of these phenomena to be relevant. Seasonality caused by Christmas is one such example (Wen 2002). In such cases, researchers mostly rely on spectral analysis and Auto-Regressive Moving-Average (ARMA) models to estimate the periodicity of cycles.1 However, and this is particularly true in social sciences, sometimes there are good theoretical reasons to expect irregular cycles. In such cases, \the identi cation of periodic movement in something like the vote is a daunting task all by itself. When a pendulum swings with an irregular beat (frequency), and the extent of the swing (amplitude) is not constant, mathematical functions like sine-waves are of no use."(Lebo and Norpoth 2007:73) In the past, this di culty has led to two di erent approaches. On the one hand, some researchers dismissed these methods altogether, relying on informal alternatives that do not meet rigorous standards of statistical inference. Goldstein (1985 and 1988), studying the severity of Great power wars is one such example. On the other hand, there are authors who transfer the assumptions of spectral analysis (and ARMA models) into fundamental assumptions about the nature of social phenomena. This type of argument was produced by Beck (1991) who, in a reply to Goldstein (1988), claimed that only \ xed period models are meaningful models of cyclic phenomena".We argue that wavelet analysis|a mathematical framework developed in the mid-1980s (Grossman and Morlet 1984; Goupillaud et al. 1984) | is a very viable alternative to study cycles in political time-series. It has the advantage of staying close to the frequency domain approach of spectral analysis while addressing its main limitations. Its principal contribution comes from estimating the spectral characteristics of a time-series as a function of time, thus revealing how its di erent periodic components may change over time. The rest of article proceeds as follows. In the section \Time-frequency Analysis", we study in some detail the continuous wavelet transform and compare its time-frequency properties with the more standard tool for that purpose, the windowed Fourier transform. In the section \The British Political Pendulum", we apply wavelet analysis to essentially the same data analyzed by Lebo and Norpoth (2007) and Merrill, Grofman and Brunell (2011) and try to provide a more nuanced answer to the same question discussed by these authors: do British electoral politics exhibit cycles? Finally, in the last section, we present a concise list of future directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spread spectrum, Automotive Radar, Indoor Positioning Systems, Ultrasonic and Microwave Imaging, super resolution technique and wavelet transform