979 resultados para Wave Parameters
Resumo:
The nonlinear amplitude modulation of electromagnetic waves propagating in pair plasmas, e.g., electron-positron or fullerene pair-ion plasmas, as well as three-component pair plasmas, e.g., electron-positron-ion plasmas or doped (dusty) fullerene pair-ion plasmas, assuming wave propagation in a direction perpendicular to the ambient magnetic field, obeying the ordinary (O-) mode dispersion characteristics. Adopting a multiple scales (reductive perturbation) technique, a nonlinear Schrodinger-type equation is shown to govern the modulated amplitude of the magnetic field (perturbation). The conditions for modulation instability are investigated, in terms of relevant parameters. It is shown that localized envelope modes (envelope solitons) occur, of the bright- (dark-) type envelope solitons, i.e., envelope pulses (holes, respectively), for frequencies below (above) an explicit threshold. Long wavelength waves with frequency near the effective pair plasma frequency are therefore unstable, and may evolve into bright solitons, while higher frequency (shorter wavelength) waves are stable, and may propagate as envelope holes.(c) 2007 American Institute of Physics.
Resumo:
A study is presented of the nonlinear self-modulation of low-frequency electrostatic (dust acoustic) waves propagating in a dusty plasma, in the presence of a superthermal ion (and Maxwellian electron) background. A kappa-type superthermal distribution is assumed for the ion component, accounting for an arbitrary deviation from Maxwellian equilibrium, parametrized via a real parameter kappa. The ordinary Maxwellian-background case is recovered for kappa ->infinity. By employing a multiple scales technique, a nonlinear Schrodinger-type equation (NLSE) is derived for the electric potential wave amplitude. Both dispersion and nonlinearity coefficients of the NLSE are explicit functions of the carrier wavenumber and of relevant physical parameters (background species density and temperature, as well as nonthermality, via kappa). The influence of plasma background superthermality on the growth rate of the modulational instability is discussed. The superthermal feature appears to control the occurrence of modulational instability, since the instability window is strongly modified. Localized wavepackets in the form of either bright-or dark-type envelope solitons, modeling envelope pulses or electric potential holes (voids), respectively, may occur. A parametric investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are affected by superthermality, as well as by relevant plasma parameters (dust concentration, ion temperature).
Resumo:
A stationary phase model is used to study supercritical waves generated by high speed ferries. Some general relationships in terms of wave angle, propagation direction, dispersion relationship and depth wavelength relationship are explored and discussed. In particular, it is shown that the wave pattern generated by high speed craft at supercritical speeds depends mainly on the relationship of water depth and ship speed and that the wave patterns are similar in terms of location of crests and troughs for a given depth Froude number. In addition it is found that the far field wave pattern can be described adequately using a single moving point source. The theoretical model compares well with towing tank measurements and full scale data over a range of parameters and hull shapes. The paper also demonstrates that the far field wave pattern at supercritical speeds should be non-dimensionalised by water depth and not hull length unlike it is usually done for subcritical speeds.
Resumo:
The concept of frequency steerable two-dimensional electromagnetic focusing by using a tapered leaky-wave line source embedded in a parallel-plate medium is presented. Accurate expressions for analyzing the focusing pattern of a rectilinear leaky-wave lens (LWL) from its constituent leaky-mode tapered propagation constant are described. The influence of the main LWL structural parameters on the synthesis of the focusing pattern is discussed. The ability to generate frequency steerable focusing patterns has been demonstrated by means of an example involving a LWL in hybrid waveguide printed-circuit technology and the results are validated by a commercial full-wave solver.
Resumo:
We propose a frequency domain adaptive algorithm for
wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the
separation ?lter is adapted from the information given by a
third microphone. Working in the frequency domain has a
series of advantages, among which are the ease of design of
the propagation ?lter and its differentiation with respect to
its parameters.
Although the adaptive algorithm was developed as a ?rst
step for the estimation of playing parameters in wind instruments it can also be used, without any modi?cations, for
other applications such as in-air direction of arrival (DOA)
estimation. Preliminary results on these applications will
also be presented.
Resumo:
A new type of one-dimensional leaky-wave antenna (LWA) with independent control of the beam-pointing angle and beamwidth is presented. The antenna is based on a simple structure composed of a bulk parallel-plate waveguide (PPW) loaded with two printed circuit boards (PCBs), each one consisting of an array of printed dipoles. One PCB acts as a partially reflective surface (PRS), and the other grounded PCB behaves as a high impedance surface (HIS). It is shown that an independent control of the leaky-mode phase and leakage rate can be achieved by changing the lengths of the PRS and HIS dipoles, thus resulting in a flexible adjustment of the LWA pointing direction and directivity. The leaky-mode dispersion curves are obtained with a simple Transverse Equivalent Network (TEN), and they are validated with three-dimensional full-wave simulations. Experimental results on fabricated prototypes operating at 15 GHz are reported, demonstrating the versatile and independent control of the LWA performance by changing the PRS and HIS parameters.
Resumo:
This paper proposes a substrate integrated waveguide
(SIW) cavity-based method that is compliant with
ground-signal–ground (GSG) probing technology for dielectric
characterization of printed circuit board materials at millimeter
wavelengths. This paper presents the theory necessary to retrieve
dielectric parameters from the resonant characteristics of SIW
cavities with particular attention placed on the coupling scheme
and means for obtaining the unloaded resonant frequency. Different
sets of samples are designed and measured to address the
influence of the manufacturing process on the method. Material
parameters are extracted at - and -band from measured data
with the effect of surface roughness of the circuit metallization
taken into account.
Resumo:
The characterisation of soils for civil engineering purposes depends on removing sufficiently high-quality samples from the ground. Accurate evaluation of sample quality is therefore important if reliable design parameters are to be determined. This paper describes the use of unconfined shear wave velocity (V s) and suction (u r) measurements to assess sample quality rapidly in soft clay. Samples of varying quality from three well-characterised soft clay sites are initially assessed using conventional techniques, and their results compared with V s and u r measurements performed on the same samples. It is observed that the quality of samples indicated by these measurements is very similar to those inferred from traditional disturbance measures, with V s being the more reliable indicator. A tentative empirically derived criterion, based on samples tested in this project, is proposed to quantify sample disturbance combining both V s and u r measurements. Further work using this criterion on different materials is important so as to test its usefulness.
Resumo:
The combinatorial frequency generation by a Fibonacci type quasi-periodic dielectric multilayered structure illuminated by two plane waves has been analysed. The effects of the layer parameters and Fibonacci sequence order on the properties of the combinatorial frequency waves emitted from the stacked nonlinear layers are discussed.
Resumo:
A linear hydrodynamic model is used to assess the sensitivity of the performance of a wave energy converter (WEC) array to control parameters. It is found that WEC arrays have a much smaller tolerance to imprecision of the control parameters than isolated WECs and that the increase in power capture of WEC arrays is only achieved with larger amplitudes of motion of the individual WECs. The WEC array radiation pattern is found to provide useful insight into the array hydrodynamics. The linear hydrodynamic model is used, together with the wave climate at the European Marine Energy Centre (EMEC), to assess the maximum annual average power capture of a WEC array. It is found that the maximum annual average power capture is significantly reduced compared to the maximum power capture for regular waves and that the optimum array configuration is also significantly modified. It is concluded that the optimum configuration of a WEC array will be as much influenced by factors such as mooring layout, device access and power smoothing as it is by the theoretical optimum hydrodynamic configuration. © 2009 Elsevier Ltd.
Resumo:
The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.
The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.
This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.
The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.
Resumo:
The properties of the combinatorial frequency generation and wave scattering by periodic stacks of nonlinear passive semiconductor layers are explored. It is demonstrated that the nonlinearity in passive weakly nonlinear semiconductor medium has the resistive nature associated with the dynamics of carriers. The features of the combinatorial frequency generation and the effects of the pump wave scattering and parameters of the constituent semiconductor layers on the efficiency of the frequency mixing are discussed and illustrated by the examples. © 2013 IEICE.
Resumo:
For wave energy to become commercially viable, it is predicted that wave energy converters (WECs) will need to be installed in large wave farms. This will required an extensive environmental impact study. Assessments of impacts of these sites requires prior numerical modelling however the available tools have not been fully validated.
This project investigates the area surrounding an array of five scaled WEC models using experimental techniques. It then assesses the suitability of numerical tools to be validated with this experimental data. Validated numerical tools could then be used to predict parameters relating to the models such as reflection and transmission coefficients.
The physical aspect of this project was conducted in the Portaferry wave basin owned by Queen’s University Belfast. The device studied was a bottom hinged oscillating wave surge converter (OWSC) which penetrates the surface (similar to the Oyster device). The models were tested at 40th scale.
Resumo:
Methods for both partial and full optimization of wavefunction parameters are explored, and these are applied to the LiH molecule. A partial optimization can be easily performed with little difficulty. But to perform a full optimization we must avoid a wrong minimum, and deal with linear-dependency, time step-dependency and ensemble-dependency problems. Five basis sets are examined. The optimized wavefunction with a 3-function set gives a variational energy of -7.998 + 0.005 a.u., which is comparable to that (-7.990 + 0.003) 1 of Reynold's unoptimized \fin ( a double-~ set of eight functions). The optimized wavefunction with a double~ plus 3dz2 set gives ari energy of -8.052 + 0.003 a.u., which is comparable with the fixed-node energy (-8.059 + 0.004)1 of the \fin. The optimized double-~ function itself gives an energy of -8.049 + 0.002 a.u. Each number above was obtained on a Bourrghs 7900 mainframe computer with 14 -15 hrs CPU time.