923 resultados para Virtual sensor, swarm robotics, simulator, tracking system.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of limb results in loss of function and a partial loss of freedom. A powered prosthetic device can partially assist an individual with everyday tasks and therefore return some level of independence. Powered upper limb prostheses are often controlled by the user generating surface electromyographic (SEMG) signals. The goal of this thesis is to develop a virtual environment in which a user can control a virtual hand to safely grasp representations of everyday objects using EMG signals from his/her forearm muscles, and experience visual and vibrotactile feedback relevant to the grasping force in the process. This can then be used to train potential wearers of real EMG controlled prostheses, with or without vibrotactile feedback. To test this system an experiment was designed and executed involving ten subjects, twelve objects, and three feedback conditions. The tested feedback conditions were visual, vibrotactile, and both visual and vibrotactile. In each experimental exercise the subject attempted to grasp a virtual object on the screen using the virtual hand controlled by EMG electrodes placed on his/her forearm. Two metrics were used: score, and time to task completion, where score measured grasp dexterity. It was hypothesized that with the introduction of vibrotactile feedback, dexterity, and therefore score, would improve and time to task completion would decrease. Results showed that time to task completion increased, and score did not improve with vibrotactile feedback. Details on the developed system, the experiment, and the results are presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El proyecto plantea la realización de un sistema de seguimiento de acciones formativas de teleformación, donde el requisito inicial es suministrar un servicio web que implementa las operaciones necesarias para el seguimiento de estas acciones formativas. La entidad principal que define este servicio podrá conectar a múltiples empresas de formación que imparten este tipo de acciones formativas y deben suministrar este servicio. El proyecto plantea el análisis completo del sistema para una determinada empresa de formación que incluye el servicio web, la plataforma formativa y demás subsistemas que se consideren necesarios. En nuestro caso una aplicación web adicional para la gestión de las acciones formativas, desarrollada con tecnología Microsoft. El servicio web se desarrolla con protocolo SOAP y tecnología Php. Se plantea el análisis completo del sistema y el diseño y desarrollo del servicio web y de la funcionalidad principal de la aplicación web de seguimiento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of the osseointegration concept and the Brånemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant’s position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic surgery (LS) has revolutionized traditional surgical techniques introducing minimally invasive procedures for diagnosis and local therapies. LSs have undeniable advantages, such as small patient incisions, reduced postoperative pain and faster recovery. On the other hand, restricted vision of the anatomical target, difficult handling of the surgical instruments, restricted mobility inside the human body, need of dexterity to hand-eye coordination and inadequate and non-ergonomic surgical instruments may restrict LS only to more specialized surgeons. To overcome the referred limitations, this work presents a new robotic surgical handheld system – the EndoRobot. The EndoRobot was designed to be used in clinical practice or even as a surgical simulator. It integrates an electromechanical system with 3 degrees of freedom. Each degree can be manipulated independently and combined with different levels of sensitivity allowing fast and slow movements. As other features, the EndoRobot has battery power or external power supply, enables the use of bipolar radiofrequency to prevent bleeding while cutting and allows plug-and-play of the laparoscopic forceps for rapid exchange. As a surgical simulator, the system was also instrumented to measure and transmit, in real time, its position and orientation for a training software able to monitor and assist the trainee’s surgical movements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A esquizofrenia é uma perturbação mental grave caracterizada pela coexistência de sintomas positivos, negativos e de desorganização do pensamento e do comportamento. As alterações motoras são consistentemente observadas mas, ainda pouco estudadas na esquizofrenia, sendo relevantes para o seu diagnóstico. Neste quadro, o presente estudo tem como objetivo verificar se os indivíduos com esquizofrenia apresentam alterações na coordenação motora, comparativamente com o grupo sem esquizofrenia, bem como analisar se as disfunções dos sinais neurológicos subtis (SNS) motores se encontram correlacionadas com o funcionamento executivo e com os domínios psicopatológicos da perturbação. No total participaram 29 indivíduos (13 com diagnóstico de esquizofrenia e 16 sem diagnóstico) equivalentes em termos de idade, género, escolaridade e índice de massa corporal. Para avaliar o desempenho motor recorreu-se ao sistema Biostage de parametrização do movimento em tempo real, com a tarefa de lançameto ao alvo; a presença de SNS foi examinada através da Brief Motor Scale; o funcionamento executivo pela aplicação do subteste do Vocabulário e da fluência verbal e a sintomatologia clínica através da Positive and Negative Sindrome Scale. Pela análise cinemática do movimento constatou-se que os indivíduos com esquizofrenia recrutam um padrão motor menos desenvolvido e imaturo de movimento, com menor individualização das componentes (principalmente do tronco e pélvis), necessitando de mais tempo para executar a tarefa, comparativamente com os sujeitos sem a perturbação que evidenciaram um movimento mais avançado de movimento. Os indivíduos com esquizofrenia mostraram índices elevados de disfunção dos SNS (média =6,01) estabelecendo este domínio uma relação boa e negativa com o desempenho verbal (rho Spearman=-0,62) e uma relação forte e positiva com todos os domínios psicopatológicos (rho Spearman=0,74). O estudo da existência de alterações motoras como parte intrínseca da esquizofrenia revela-se pertinente uma vez que possibilita uma compreensão mais aprofundada da sua fisiopatologia e permite que se desenvolvam práticas mais efetivas na área da saúde e reabilitação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since its official public release, Android has captured the interest from companies, developers and the general audience. From that time up to now, this software platform has been constantly improved either in terms of features or supported hardware and, at the same time, extended to new types of devices different from the originally intended mobile ones. However, there is a feature that has not been explored yet - its real-time capabilities. This paper intends to explore this gap and provide a basis for discussion on the suitability of Android in order to be used in Open Real-Time environments. By analysing the software platform, with the main focus on the virtual machine and its underlying operating system environments, we are able to point out its current limitations and, therefore, provide a hint on different perspectives of directions in order to make Android suitable for these environments. It is our position that Android may provide a suitable architecture for real-time embedded systems, but the real-time community should address its limitations in a joint effort at all of the platform layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica