1000 resultados para Vehicle Status.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
On-board mass (OBM) monitoring devices on heavy vehicles (HVs) have been tested in a national programme jointly by Transport Certification Australia Limited and the National Transport Commission. The tests were for, amongst other parameters, accuracy and tamper-evidence. The latter by deliberately tampering with the signals from OBM primary transducers during the tests. The OBM feasibility team is analysing dynamic data recorded at the primary transducers of OBM systems to determine if it can be used to detect tamper events. Tamper-evidence of current OBM systems needs to be determined if jurisdictions are to have confidence in specifying OBM for HVs as part of regulatory schemes. An algorithm has been developed to detect tamper events. The results of its application are detailed here.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
Visual impairment is an important contributing factor in falls among older adults, which is one of the leading causes of injury and injury-related death in this population. Visual impairment is also associated with greater disability among older adults, including poorer health-related quality of life, increased frailty and reduced postural stability. The majority of this evidence, however, is based on measures of central visual function, rather than peripheral visual function. As such, there is comparatively limited research on the associations between peripheral visual function, disability and falls, and even fewer studies involving older adults with specific diseases which affect peripheral visual function, the most common of which is glaucoma. Glaucoma is one of the leading causes of irreversible vision loss among older adults, affecting around 3 per cent of adults aged over 60 years. The condition is characterised by retinal nerve fibre loss, primarily affecting peripheral visual function. Importantly, the number of older adults with glaucomatous visual impairment is projected to increase as the ageing population grows. The first component of the thesis examined the cross-sectional association between glaucomatous visual impairment and health-related quality of life (Study 1a), functional status (Study 1b) and postural stability (Study 1c) among older adults. A cohort of 74 community-dwelling adults with glaucoma (mean age 74.2 ± 5.9 years) was recruited and completed a baseline assessment. A number of visual function measures was assessed, including central visual function (visual acuity and contrast sensitivity), motion sensitivity, retinal nerve fibre analysis and monocular and binocular visual field measures (monocular 24-2 and binocular integrated visual fields (IVF): IVF-60 and IVF-120). The analyses focused on the associations between the outcomes measures and severity and location of visual field loss, as this is the primary visual function affected by glaucoma. In Study 1a, we examined the association between visual field loss and health-related quality of life, measured by the Short Form 36-item Health Survey (SF-36). Greater binocular visual field loss, on both IVF measures, was associated with lower SF-36 physical component scores, adjusted for age and gender (Pearson's r =|0.32| to |0.36|, p<0.001). Furthermore, inferior visual field loss was more strongly associated with the SF-36 physical component than superior field loss. No association was found between visual field loss and SF-36 mental component scores. The association between visual field loss and functional status was examined in Study 1b. Functional status outcomes measures included a physical activity questionnaire (Physical Activity Scale for the Elderly, PASE), performance tests (six-minute walk test, timed up and go test and lower leg strength) and an overall functional status score. Significant, but weak, correlations were found between binocular visual field loss and PASE and overall functional status scores, adjusted for age and gender (Pearson's r =|0.24| to |0.33|, p<0.05). Greater inferior visual field loss, independent of superior visual field loss, was significantly associated with poorer physical performance results and lower overall functional status scores. In Study 1c, we examined the association between visual field loss and postural stability, using a swaymeter device which recorded body movement during four conditions: eyes open and closed, on a firm and foam surface. Greater binocular visual field loss was associated with increased postural sway, both on firm and foam surfaces, independent of age and gender (Pearson’s r =|0.44| to |0.46|, p <0.001). Furthermore, inferior visual field was a stronger contributor to postural stability, more so than the superior visual field, particularly on the foam condition with the eyes open. Greater visual field loss was associated with a reduction in the visual contribution to postural sway, which underlies the observed association with postural sway. The second component of the thesis examined the association between severity and location of visual field loss and falls during a 12-month longitudinal follow-up. The number of falls was assessed prospectively using monthly fall calendars. Of the 71 participants who successfully completed the follow up (mean age 73.9 ± 5.7 years), 44% reported one or more falls, and around 20% reported two or more falls. After adjusting for age and gender, every 10 points missed on the IVF-120 increased the rate of falls by 25% (rate ratio 1.25, 95% confidence interval 1.08 - 1.44) or every 5dB reduction in IVF-60 increased the rate of falls by 47% (rate ratio 1.47, 95% confidence interval 1.16 - 1.87). Inferior visual field loss was a significant predictor of falls, more so than superior field loss, highlighting the importance of the inferior visual field area in safe and efficient navigation. Further analyses indicated that postural stability, more so than functional status, may be a potential mediating factor in the relationship between visual field loss and falls. Future research is required to confirm this causal pathway. In addition, the use of topical beta-blocker medications was not associated with an increased rate of falls in this cohort, compared with the use of other topical anti-glaucoma medications. In summary, greater binocular visual field loss among older adults with glaucoma was associated with poorer health-related quality of life in the physical domain, reduced functional status, greater postural instability and higher rates of falling. When the location of visual field loss was examined, inferior visual field loss was consistently more strongly associated with these outcomes than superior visual field loss. Insights gained from this research improve our understanding of the association between glaucomatous visual field loss and disability, and its link with falls among older adults. The clinical implications of this research include the need to include visual field screening in falls risk assessments among older adults and to raise awareness of these findings to eye care practitioners and adults with glaucoma. The findings also assist in developing further research to examine strategies to reduce disability and prevent falls among older adults with glaucoma to promote healthy ageing and independence for these individuals.
Resumo:
BACKGROUND: The relationship between cigarette smoking and cardiovascular disease is well established, yet the underlying mechanisms remain unclear. Although smokers have a more atherogenic lipid profile, this may be mediated by other lifestyle-related factors. Analysis of lipoprotein subclasses by the use of nuclear magnetic resonance spectroscopy (NMR) may improve characterisation of lipoprotein abnormalities. OBJECTIVE: We used NMR spectroscopy to investigate the relationships between smoking status, lifestyle-related risk factors, and lipoproteins in a contemporary cohort. METHODS: A total of 612 participants (360 women) aged 40–69 years at baseline (199021994) enrolled in the Melbourne Collaborative Cohort Study had plasma lipoproteins measured with NMR. Data were analysed separately by sex. RESULTS: After adjusting for lifestyle-related risk factors, including alcohol and dietary intake, physical activity, and weight, mean total low-density lipoprotein (LDL) particle concentration was greater for female smokers than nonsmokers. Both medium- and small-LDL particle concentrations contributed to this difference. Total high-density lipoprotein (HDL) and large-HDL particle concentrations were lower for female smokers than nonsmokers. The proportion with low HDL particle number was greater for female smokers than nonsmokers. For men, there were few smoking-related differences in lipoprotein measures. CONCLUSION: Female smokers have a more atherogenic lipoprotein profile than nonsmokers. This difference is independent of other lifestyle-related risk factors. Lipoprotein profiles did not differ greatly between male smokers and nonsmokers.
Resumo:
Existing court data suggest that adult Indigenous offenders are more likely than non-Indigenous defendants to be sentenced to prison but once imprisoned generally receive shorter terms. Using findings from international and Australian multivariate statistical analyses, this paper reviews the three key hypotheses advanced as plausible explanations for these differences: 1) differential involvement, 2) negative discrimination, 3) positive discrimination. Overall, prior research shows strong support for the differential involvement thesis, some support for positive discrimination and little foundation for negative discrimination in the sentencing of Indigenous defendants. Where discrimination is found, we argue that this may be explained by the lack of a more complete set of control variables in researchers’ multivariate models.
Resumo:
In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise.
Resumo:
Background: A number of studies have examined the relationship between high ambient temperature and mortality. Recently, concern has arisen about whether this relationship is modified by socio-demographic factors. However, data for this type of study is relatively scarce in subtropical/tropical regions where people are well accustomed to warm temperatures. Objective: To investigate whether the relationship between daily mean temperature and daily all-cause mortality is modified by age, gender and socio-economic status (SES) in Brisbane, Australia. Methods: We obtained daily mean temperature and all-cause mortality data for Brisbane, Australia during 1996–2004. A generalised additive model was fitted to assess the percentage increase in all deaths with every one degree increment above the threshold temperature. Different age, gender and SES groups were included in the model as categorical variables and their modification effects were estimated separately. Results: A total of 53,316 non-external deaths were included during the study period. There was a clear increasing trend in the harmful effect of high temperature on mortality with age. The effect estimate among women was more than 20 times that among men. We did not find an SES effect on the percent increase associated with temperature. Conclusions: The effects of high temperature on all deaths were modified by age and gender but not by SES in Brisbane, Australia.
Resumo:
There is increasing epidemiological and molecular evidence that cutaneous melanomas arise through multiple causal pathways. The purpose of this study was to explore the relationship between germline and somatic mutations in a population-based series of melanoma patients to reshape and refine the divergent pathway model for melanoma. Melanomas collected from 123 Australian patients were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed phenotypic and sun exposure data were systematically collected from all patients. We found that BRAF-mutant melanomas were significantly more likely from younger patients and those with high nevus counts, and were more likely in melanomas with adjacent neval remnants. Conversely, BRAF-mutant melanomas were significantly less likely in people with high levels of lifetime sun exposure. We observed no association between germline MC1R status and somatic BRAF mutations in melanomas from this population. BRAF-mutant melanomas have different origins from other cutaneous melanomas. These data support the divergent pathways hypothesis for melanoma, which may require a reappraisal of targeted cancer prevention activities.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.