974 resultados para VISIBLE-LIGHT
Resumo:
In this paper we present results on the use of a semiconductor heterostructure based on a-SiC:H as a wavelength-division demultiplexer for the visible light spectrum. The proposed device is composed of two stacked p-i-n photodiodes with intrinsic absorber regions adjusted to short and long wavelength absorption and carrier collection. An optoelectronic characterisation of the device was performed in the visible spectrum. Demonstration of the device functionality for WDM applications was done with three different input channels covering the long, the medium and the short wavelengths in the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. An electrical model of the WDM device is proposed and supported by the solution of the respective circuit equations. Short range optical communications constitute the major application field however other applications are foreseen. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device (WDM) for the visible light spectrum. The WDM device is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO heterostructure in which the generated photocurrent at different values of the applied bias can be assigned to the different optical signals. The device was characterized through spectral response measurements, under different electrical bias. Demonstration of the device functionality for WDM applications was done with three different input channels covering wavelengths within the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. The influence of the optical power density was also analysed. An electrical model, supported by a numerical simulation explains the device operation. Short range optical communications constitute the major application field, however other applications are also foreseen.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
In this paper the viability of an integrated wavelength optical filter and photodetector for visible light communication (VLC) is discussed. The proposed application uses indoor warm light lamps lighting accomplished by ultra-bright light-emitting diodes (LEDs) pulsed at frequencies higher than the ones perceived by the human eye. The system was analyzed at two different wavelengths in the visible spectrum (430 nm and 626 nm) with variable optical intensities. The signals were transmitted into free space and measured using a multilayered photodetector based on a-SiC:H/a-Si:H. The detector works as an optical filter with controlled wavelength sensitivity through the use of optical bias. The output photocurrent was measured for different optical intensities of the transmitted optical signal and the extent of each signal was tested. The influence of environmental fluorescent lighting was also analysed in order to test the strength of the system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A análise forense de documentos é uma das áreas das Ciências Forenses, responsável pela verificação da autenticidade dos documentos. Os documentos podem ser de diferentes tipos, sendo a moeda ou escrita manual as evidências forenses que mais frequentemente motivam a análise. A associação de novas tecnologias a este processo de análise permite uma melhor avaliação dessas evidências, tornando o processo mais célere. Esta tese baseia-se na análise forense de dois tipos de documentos - notas de euro e formulários preenchidos por escrita manual. Neste trabalho pretendeu-se desenvolver técnicas de processamento e análise de imagens de evidências dos tipos referidos com vista a extração de medidas que permitam aferir da autenticidade dos mesmos. A aquisição das imagens das notas foi realizada por imagiologia espetral, tendo-se definidas quatro modalidades de aquisição: luz visível transmitida, luz visível refletida, ultravioleta A e ultravioleta C. Para cada uma destas modalidades de aquisição, foram também definidos 2 protocolos: frente e verso. A aquisição das imagens dos documentos escritos manualmente efetuou-se através da digitalização dos mesmos com recurso a um digitalizador automático de um aparelho multifunções. Para as imagens das notas desenvolveram-se vários algoritmos de processamento e análise de imagem, específicos para este tipo de evidências. Esses algoritmos permitem a segmentação da região de interesse da imagem, a segmentação das sub-regiões que contém as marcas de segurança a avaliar bem como da extração de algumas características. Relativamente as imagens dos documentos escritos manualmente, foram também desenvolvidos algoritmos de segmentação que permitem obter todas as sub-regiões de interesse dos formulários, de forma a serem analisados os vários elementos. Neste tipo de evidências, desenvolveu-se ainda um algoritmo de análise para os elementos correspondentes à escrita de uma sequência numérica o qual permite a obtenção das imagens correspondentes aos caracteres individuais. O trabalho desenvolvido e os resultados obtidos permitiram a definição de protocolos de aquisição de imagens destes tipos de evidências. Os algoritmos automáticos de segmentação e análise desenvolvidos ao longo deste trabalho podem ser auxiliares preciosos no processo de análise da autenticidade dos documentos, o qual, ate então, é feito manualmente. Apresentam-se ainda os resultados dos estudos feitos às diversas evidências, nomeadamente as performances dos diversos algoritmos analisados, bem como algumas das adversidades encontradas durante o processo. Apresenta-se também uma discussão da metodologia adotada e dos resultados, bem como de propostas de continuação deste trabalho, nomeadamente, a extração de características e a implementação de classificadores capazes aferir da autenticidade dos documentos.
Resumo:
Breast cancer is the most common type of cancer worldwide. The effectiveness of its treatment depends on early stage detection, as well as on the accuracy of its diagnosis. Recently, diagnosis techniques have been submitted to relevant breakthroughs with the upcoming of Magnetic Resonance Imaging, Ultrasound Sonograms and Positron Emission Tomography (PET) scans, among others. The work presented here is focused on studying the application of a PET system to a Positron Emission Mammography (PEM) system. A PET/PEM system works under the principle that a scintillating crystal will detect a gamma-ray pulse, originated at the cancerous cells, converting it into a correspondent visible light pulse. The latter must then be converted into an electrical current pulse by means of a Photo- -Sensitive Device (PSD). After the PSD there must be a Transimpedance Amplifier (TIA) in order to convert the current pulse into a suitable output voltage, in a time period lower than 40 ns. In this Thesis, the PSD considered is a Silicon Photo-Multiplier (SiPM). The usage of this recently developed type of PSD is impracticable with the conventional TIA topologies, as it will be proven. Therefore, the usage of the Regulated Common-Gate (RCG) topology will be studied in the design of the amplifier. There will be also presented two RCG variations, comprising a noise response improvement and differential operation of the circuit. The mentioned topology will also be tested in a Radio-Frequency front-end, showing the versatility of the RCG. A study comprising a low-voltage self-biasing feedback TIA will also be shown. The proposed circuits will be simulated with standard CMOS technology (UMC 130 nm), using a 1.2 V power supply. A power consumption of 0.34 mW with a signal-to-noise ratio of 43 dB was achieved.
Resumo:
Marine organisms are rich in a variety of materials with potential use in Tissue Engineering and Regenerative Medicine. One important example is fucoidan, a sulfated polysaccharide extracted from the cell wall of brown seaweeds. Fucoidan is composed by L-fucose, sulfate groups and glucuronic acid. It has important bioactive properties such as anti-oxidative, anticoagulant, anticancer and reducing the blood glucose (1). In this work, the biomedical potential of fucoidan-based materials as drug delivery system was assessed by processing modified fucoidan (MFu) into particles by photocrosslinking using superamphiphobic surfaces and visible light. Fucoidan was modified by methacrylation reaction using different concentrations of methacrylate anhydride, namely 8% v/v (MFu1) and 12% v/v (MFu2). Further, MFu particles with and without insulin (5% w/v) were produced by pipetting a solution of 5% MFu with triethanolamine and eosin-y onto a superamphiphobic surface and then photocrosslinking using visible light (2). The developed particles were characterized to assess their chemistry, morphology, swelling behavior, drug release, insulin content and encapsulation efficiency. Moreover, the viability assays of fibroblast L929 cells in contact with MFu particles showed good adhesion and proliferation up to 14 days. Furthermore, the therapeutic potential of these particles using human beta cells is currently under investigation. Results obtained so far suggest that modified fucoidan particles could be a good candidate for diabetes mellitus therapeutic approaches.
Resumo:
Polymer based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistance to thermal and light deterioration. Gd2O3:Eu has been selected as scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young´s modulus with respect to PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and X-ray input power. In this way, Gd2O3:Eu/PVDF composites shows suitable characteristics to be used as X-ray radiation transducers, in particular for large area applications.
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
Tese de Doutoramento em Engenharia Eletrónica e de Computadores.
Resumo:
Estudio elaborado a partir de una estancia en la Universidad de Rochester, Estados Unidos, de octubre del 2006 a enero del 2007. La estancia realizada en la Universidad de Rochester estuvo orientada al aprendizaje en profundidad del oftalmoscopio láser de barrido. El oftalmoscopio láser de barrido emplea una técnica confocal con la finalidad de visualizar diferentes estructuras retinianas en seres vivos. El instrumento diseñado y desarrollado en el Centro de Ciencias de la Visión incorpora un sistema de óptica adaptativa y fluorescencia. La óptica adaptativa aplicada en este oftalmoscopio tiene como objetivo corregir las aberraciones existentes en el ojo y así permitir observar detalles de la retina que de otra forma se verían emborronados. De esta forma se consigue alcanzar valores de resolución muy cercanos a los impuestos por difracción. Por otro lado el uso de fluorescencia tiene por objetivo el permitir la visualización de células y estructuras que, de no ser teñidas, son transparentes a la luz y visible. Esta técnica se ha estado utilizando principalmente en primates y ratas, aunque actualmente también se están llevando a cabo medidas de células de epitelio pigmentario en seres humanos ya que el pigmento contenido en estas células permite la aplicación de la fluorescencia sin necesidad de utilizar tinción.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.