988 resultados para Universal soil loss equation (USLE)
Resumo:
Tese de mestrado, Geologia do Ambiente, Riscos Geológicos e Ordenamento do TerritórioUniversidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Land degradation in the Philippine uplands is severe and widespread. Most upland areas are steep, and intense rainfall on soils disturbed by intensive agriculture can produce high rates of soil loss. This has serious implications for the economic welfare of a growing upland population with few feasible livelihood alternatives. Hedgerow intercropping can greatly reduce soil loss from annual cropping systems and has been considered an appropriate technology for soil conservation research and extension in the Philippine uplands. However; adoption of hedgerow intercropping has been sporadic and transient, rarely continuing once external support has been withdrawn. The objective of this paper is to investigate the economic incentives for farmers in the Philippine uplands to adopt hedgerow intercropping relative to traditional open-field maize farming. Cost-benefit analysis is used to compare the economic viability of hedgerow intercropping, as it has been promoted to upland farmers, with the viability of traditional methods of open-field farming. The APSIM and SCUAF models were used to predict the effect of soil erosion on maize yields from open-field farming and hedgerow intercropping. The results indicate that there have been strong economic incentives for farmers with limited planning horizons to reject hedgerow intercropping because the benefits of sustained yields are not realized rapidly enough to compensate for high establishment costs. Alternative forms of hedgerow intercropping such as natural vegetation and grass strips reduce establishment and maintenance costs and are therefore more economically attractive to farmers than hedgerow intercropping with shrub legumes. The long-term economic viability of hedgerow intercropping depends on the economic setting and the potential for hedgerow intercropping to sustain maize production relative to traditional open-field farming. (C) 1998 Academic Press.
Resumo:
No abstract
Resumo:
Nielsen and Perrochet [Adv. Water Resour. 23 (2000) 503] presented experimental data for cyclic water movement in the vadose zone above an oscillating watertable. The response of the watertable to cyclic forcing was characterised by the ratios of the forcing head to watertable amplitudes and their associated phase lag. They found that their non-hysteretic Richards' equation model failed to represent the observed behaviour of these parameters. This paper explores the effect on the simulated capillary fringe dynamics (in terms of these parameters) of including varying degrees of hysteresis in the moisture retention curve used in a numerical model of their experiment. It is clear that hysteresis can indeed account for observed discrepancies between simulation and experiment and that the effect of hysteresis varies with the frequency of oscillation. The use of a single-valued mean retention curve, as advocated by some authors, fails to provide a match between the simulated and observed behaviour of the Nielsen and Perrochet parameters, but is shown to be adequate for predicting time-averaged soil moisture profiles. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Growing Green Communities is strongly committed to improving the quality of Camp Creek and its watershed by reducing soil loss, which will benefit landowners by preserving their topsoil and improve the water quality of Camp Creek by reducing sediment loading of the creek. To accomplish the goal of reducing soil loss and improving water quality, Growing Green Communities has worked with the Iowa Department of Natural Resources to identify areas of concentrated flow paths (CFPs) within the Camp Creek Watershed using LiDAR topographic mapping technology. A goal of this project is to identify sites expected to have the greatest impact in reducing soil loss and to install Best Management Practices (BMPs) at these sites. Landowners and other project partners will work to develop the most effective BMPs for each site. After the BMPs are designed and constructed, a conservation easement will be recorded to protect the BMPs. GGC plans to record 40 acres as easements. The easements will be purchased by Growing Green Communities and donated to a qualified conservation organization for long term management and maintenance.
Resumo:
Dryland agriculture in Cabo Verde copes with steep slopes, inadequate practices, irregular intense rain, recurrent droughts, high runoff rates, severe soil erosion and declining fertility, leading to the inefficient use of rainwater. Maize and beans occupy N80% of the arable land in low-input, low-yielding subsistence farming. Three collaborative field trialswere conducted in different agroecological zones to evaluate the effects ofwater-conservation techniques (mulching of crop residue, a soil surfactant and pigeon-pea hedges) combinedwith organic amendments (compost and animal or green manure) on runoff and soil loss. During the 2011 and 2012 rainy seasons, three treatments and one control (traditional practice) were applied to 44- and 24-m2 field plots. A local maize variety and two types of beanswere planted. Runoff and suspended sedimentswere collected and quantified after each daily erosive rainfall. Runoff occurred for rainfalls≥50mm(slope b10%, loamy Kastanozem),≥60mm(slope≤23%, silt–clay–loam Regosol) and≥40mm(slope≤37%, sandy loam Cambisol). Runoffwas significantly reduced only with themulch treatment on the slope N10% and in the treatment of surfactant with organic amendment on the slope b10%. Soil loss reached 16.6, 5.1, 6.6 and 0.4 Mg ha−1 on the Regosol (≤23% slope) for the control, surfactant, pigeon-pea and mulch/pigeon-pea (with organic amendment) treatments, respectively; 3.2, 0.9, 1.3 and 0.1 Mg ha−1 on the Cambisol (≤37% slope) and b0. 2Mg ha−1 for all treatments and control on the Kastanozem(b10% slope). Erosion was highly positively correlated with runoff. Mulch with pigeon-pea combinedwith an organic amendment significantly reduced runoff and erosion fromagricultural fields on steep slopes, contributing to improved use of rainwater at the plot level. Sustainable land management techniques, such as mulching with pigeon-pea hedges and an organic amendment, should be advocated and promoted for the semiarid hillsides of Cabo Verde prone to erosion to increase rainwater-use and to prevent further soil degradation.
Resumo:
Cape Verde is considered part of Sahelian Africa, where drought and desertification are common occurrences. The main activity of the rural population is rain-fed agriculture, which over time has been increasingly challenged by high temporal and spatial rainfall variability, lack of inputs, limited land area, fragmentation of land, steep slopes, pests, lack of mechanization and loss of top soil by water erosion. Human activities, largely through poor farming practices and deforestation (Gomez, 1989) have accelerated natural erosion processes, shifting the balance between soil erosion and soil formation (Norton, 1987). According to previous studies, vegetation cover is one of the most important factors in controlling soil loss (Cyr et al., 1995; Hupy, 2004; Zhang et al., 2004; Zhou et al., 2006). For this reason, reforestation is a touchstone of the Cape Verdean policy to combat desertification. After Independence in 1975, the Cape Verde government had pressing and closely entangled environmental and socio-economic issues to address, as long-term desertification had resulted in a lack of soil cover, severe soil erosion and a scarcity of water resources and fuel wood. Across the archipelago, desertification was resulting from a variety of processes including poor farming practices, soil erosion by water and wind, soil and water salinity in coastal areas due to over pumping and seawater intrusion, drought and unplanned urbanization (DGA-MAAP, 2004). All these issues directly affected socio-economic vulnerability in rural areas, where about 70% of people depended directly or indirectly on agriculture in 1975. By becoming part of the Inter- State Committee for the Fight against Drought in the Sahel in 1975, the government of Cape Verde gained structured support to address these issues more efficiently. Presentday policies and strategies were defined on the basis of rational use of resources and human efforts and were incorporated into three subsequent national plans: the National Action Plan for Development (NDP) (1982–1986), the NDP (1986–1990) and the NDP (1991–1995) (Carvalho
Resumo:
Water erosion is the major cause of soil and water losses and the main factor of degradation of agricultural areas. The objective of this work was to quantify pluvial water erosion from an untilled soil with crop rows along the contour, in 2009 and 2010, on a Humic Dystrupept, with the following treatments: a) maize monoculture; b) soybean monoculture; c) common bean monoculture; d) intercropped maize and bean, exposed to four simulated rainfall tests of on hour at controlled intensity (64 mm h-1). The first test was applied 18 days after sowing and the others; 39, 75 and 120 days after the first test. The crop type influenced soil loss through water erosion in the simulated rainfall tests 3 and 4; soybean was most effective in erosion control in test 3, however, in test 4, maize was more effective. Water loss was influenced by the crop type in test 3 only, where maize and soybean were equally effective, with less runoff than from the other crops. The soil loss rate varied during the runoff sampling period in different ways, demonstrating a positive linear relationship between soil and water loss, in the different rainfall tests.
Resumo:
ABSTRACT Water erosion is one of the main factors driving soil degradation, which has large economic and environmental impacts. Agricultural production systems that are able to provide soil and water conservation are of crucial importance in achieving more sustainable use of natural resources, such as soil and water. The aim of this study was to evaluate soil and water losses in different integrated production systems under natural rainfall. Experimental plots under six different land use and cover systems were established in an experimental field of Embrapa Agrossilvipastoril in Sinop, state of Mato Grosso, Brazil, in a Latossolo Vermelho-Amarelo Distrófico (Udox) with clayey texture. The treatments consisted of perennial pasture (PAS), crop-forest integration (CFI), eucalyptus plantation (EUC), soybean and corn crop succession (CRP), no ground cover (NGC), and forest (FRS). Soil losses in the treatments studied were below the soil loss limits (11.1 Mg ha-1 yr-1), with the exception of the plot under bare soil (NGC), which exhibited soil losses 30 % over the tolerance limit. Water losses on NGC, EUC, CRP, PAS, CFI and FRS were 33.8, 2.9, 2.4, 1.7, 2.4, and 0.5 % of the total rainfall during the period of study, respectively.
Resumo:
Walnut Creek is a Class B warm water stream located in northern Poweshiek County. The creek is sixteen miles in length with 26,223 acres of watershed area. Walnut Creek is listed on the 2008 impaired waters list as biologically impaired. Based on results of biological monitoring, no specific causes of the impairment have been identified. This watershed is of particular significance to the Poweshiek SWCD and the state of Iowa because water quality protection efforts can be implemented that will address the impairment. The Poweshiek SWCD received a watershed development grant in 2005, to complete a watershed assessment for the Walnut Creek Watershed. The results of the assessments showed an estimated 23,224 tons of sediment are delivered annually to Walnut Creek, and, about 34% of land in the watershed is delivering nearly 66% of the sediment. Therefore, the acres with more than 1 ton/ac/yr sediment delivery have been prioritized. In Jan. 2008, an implementation grant began. The 1st year’s EQIP matching funds were obligated by July 2008. Specific objectives are to: 1) Reduce sediment delivery by 3,205 tons, by installing conservation practices on the sediment delivery areas of more that 1 ton/ac/yr, and, 2) Develop an information and education program for landowners. The District has prioritized the Walnut Creek watershed for 50% EQIP funding to be combined with 25% WSPF funds. This application is for additional practice funds, utilized as 50% cost-share, to be used with 25% WSPF funds, for eligible soil loss projects (>1 ton/ac), when EQIP funds are not available.
Resumo:
The primary goal of the Hewitt Creek watershed council is to have Hewitt-Hickory Creek removed from the Iowa impaired waters (303d) list. Hewitt Creek watershed, a livestock dense 23,005 acre sub-watershed of the Maquoketa River Basin, is 91.2% agricultural and 7.5% woodland. Since 2005, sixty-seven percent of 84 watershed farm operations participated in an organized watershed improvement effort using a performance based watershed management approach, reducing annual sediment delivery to the stream by 4,000 tons. Watershed residents realize that water quality improvement efforts require a long-term commitment in order to meet their watershed improvement goals and seek funding for an additional five years to continue their successful watershed improvement project. Cooperators will be provided incentives for improved environmental performance, along with incentives and technical support to address feedlot runoff issues and sub-surface nitrate-nitrogen loss. The Phosphorus Index, Soil Conditioning Index and cornstalk nitrate test will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce nutrient and sediment delivery. Twenty-five livestock operations will improve feedlot runoff control systems and five sub-surface bioreactors will be installed to reduce nitrate delivery from priority tile-drained fields. The Hewitt Creek council will seek additional cost-share funding for high-cost feedlot runoff control structures, sediment control basins and stream bank stabilization projects.
Resumo:
Miller Creek is on the 2006 Section 303d Impaired Waters List and has a 19,926 acre watershed. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to sediment and nutrient delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. In an effort to control these problems, the Miller Creek Water Quality Project will target areas of 5 tons per acre or greater soil loss or with 0.5 tons per acre or greater sediment delivery rates. The assessment revealed these targeted priority lands make up 32% or 6,395 acres of the Miller Creek watershed. Priority lands include cropland, pasture land, timber, and sensitive riparian areas. It is the goal of this project to reduce sediment delivery by 70% on 60% or 3,837 acres of these priority lands. This will be accomplished through installation of strategically placed structural practices, rotational grazing systems, and buffer strips. These practices will reduce soil loss, reduce sediment delivery, improve water quality, and improve wildlife habitat in the watershed. Utilizing partnerships with NRCS and IDALS-DSC will be important in making this project successful. In addition to using matching funds from EQIP, WHIP, and CRP, the Monroe SWCD is committed to prioritizing local cost share funds through IFIP and REAP for use in the Miller Creek Watershed.
Resumo:
Miller Creek, a 19,926 acre watershed, is listed on the 2008 Section 303d Impaired Waters List. All indicators, as reported in the Miller Creek assessment, show that the impairment is due to nutrient and sediment delivery from upland runoff which contributes to elevated water temperatures, excessive algae, and low dissolved oxygen levels within the stream. The WIRB board provided implementation grant funds in 2010 for a three year project to treat targeted areas of 5 tons per acre or greater soil loss with an estimated reduction of 2,547 tons. As of December 1, 2012, with 95% of the funds allocated, the final results are estimated to provide a sediment delivery reduction of 4,500 tons and an estimated phosphorus reduction of 5,700 lbs per year. These accomplishments and the completion of the three year Miller Creek WIRB project represent "Phase I" of the SWCD's goals to treat the Miller Creek watershed. This application represents "Phase II" or the final phase of the Miller Creek water quality project. The Monroe SWCD plans to reduce sediment delivery by 70% on an additional 245 acres of priority land. This goal will be accomplished through installation of strategically placed structural practices, BMPs, and grazing systems. These practices will reduce soil loss, nutrient runoff, and sediment delivery as well as improve water quality and wildlife habitat in the watershed. Utilization of partnerships with NRCS and IDALS-DSC will continue to be an important part to the success of the project. Project goals will be achieved by utilizing matching funds from EQIP, and the Monroe SWCD has approved the use of District IFIP cost share funds specifically for use in the Miller Creek Watershed.
Resumo:
The Competine Creek watershed is a 24,956 acre sub-watershed of Cedar Creek. The creek traverses portions of three counties, slicing through rich and highly productive Southern lowa Drift Plain soils. The watershed is suffering from excessive sediment delivery and frequent flash floods that have been exacerbated by recent high rainfall events. Assessment data reveals soil erosion estimated to be 38,435 tons/year and sediment delivery to the creek at 15,847 tons/year. The Competine Creek Partnership Project is seeking WIRB funds to merge with IDALS-DSC funds and local funds, all targeted for structural Best Management Practices (BMPs) within the 2,760 acres of High Priority Areas (HPAs) identified by the assessment process. The BMPs will include grade stabilization structures, water and sediment basins, tile-outlet terraces, CRP, and urban storm water conservation practices. In addition, Iowa State University Extension-Iowa Learning Farm is investing in the project by facilitating a crop sampling program utilizing fall stalk nitrate, phosphorous index, and soil conditioning index testing. These tests will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce sediment and nutrient delivery to Competine Creek.
Resumo:
Price Creek is a 13 mile long stream located in SE Benton County and the NE corner of Iowa County. It ends below the village of Amana where it flows into the Iowa River. The Iowa and Benton County Soil & Water Conservation Districts (SWCDs) applied (and were tentatively approved) for 319/WPF/WSPF funding to treat livestock and water quality issues in this watershed over the next three years. That project’s funds were allocated for a Project Coordinator, information and education activities, and cost share for Best Management Practices (BMPs) directed toward livestock issues and nutrient issues. Soil erosion and sedimentation are also problems in this 18,838 acre watershed. It is 64% HEL (highly erodible land) and 58% of it is cropped. With a coordinator working with Price Creek producers, this would be an excellent time to also address the soil loss and sedimentation issues in this watershed. We will offer additional cost share incentives on BMPs targeting soil erosion on the critical areas we’ve identified. We are applying to IWIRB for additional funding to allow us to cost share specific BMPs up to 75% to treat soil loss in these critical areas of the Price Creek Watershed.