952 resultados para Transplantation Conditioning
Resumo:
The aim of the study was to evaluate gastrointestinal (GI) complications after kidney transplantation in the Finnish population. The adult patients included underwent kidney transplantation at Helsinki University Central Hospital in 1990-2000. Data on GI complications were collected from the Finnish Kidney Transplantation Registry, patient records and from questionnaires sent to patients. Helicobacter pylori IgG and IgA antibodies were measured from 500 patients before kidney transplantation and after a median 6.8-year follow up. Oesophagogastroduodenoscopy with biopsies was performed on 46 kidney transplantation patients suffering from gastroduodenal symptoms and 43 dyspeptic controls for studies of gastroduodenal cytomegalovirus (CMV) infection. Gallbladder ultrasound was performed on 304 patients after a median of 7.4 years post transplantation. Data from these 304 patients were also collected on serum lipids, body mass index and the use of statin medication. Severe GI complications occurred in 147 (10%) of 1515 kidney transplantations, 6% of them fatal after a median of 0.93 years. 51% of the complications occurred during the first post transplantation year, with highest incidence in gastroduodenal ulcers and complications of the colon. Patients with GI complications were older and had more delayed graft function and patients with polycystic kidney disease had more GI complications than the other patients. H.pylori seropositivity rate was 31% and this had no influence on graft or patient survival. 29% of the H.pylori seropositive patients seroreverted without eradication therapy. 74% of kidney transplantation patients had CMV specific matrix protein pp65 or delayed early protein p52 positive findings in the gastroduodenal mucosa, and 53% of the pp65 or p52 positive patients had gastroduodenal erosions without H.pylori findings. After the transplantation 165 (11%) patients developed gallstones. A biliary complication including 1 fatal cholecystitis developed in 15% of the patients with gallstones. 13 (0.9%) patients had pancreatitis. Colon perforations, 31% of them fatal, occurred in 16 (1%) patients. 13 (0.9%) developed a GI malignancy during the follow up. 2 H.pylori seropositive patients developed gastroduodenal malignancies during the follow up. In conclusion, severe GI complications usually occur early after kidney transplantation. Colon perforations are especially serious in kidney transplantation patients and colon diverticulosis and gallstones should be screened and treated before transplantation. When found, H.pylori infection should also be treated in these patients.
Resumo:
The idea of retinal cell transplantation as a potential treatment for age-related retinal degeneration, a leading cause of blindness in the Western world, has been around for a number of decades. To date, however, it has not been entirely successful; one of the main reasons for this is the lack of an ideal substratum for the retinal cells, specifically for the growth of retinal pigment epithelial cells prior to transplantation. This chapter reviews the reasoning behind this potential treatment, the development of animal transplantation models for human trials, the prerequisites of an ideal substratum, the past and current research on substratum materials, and the potential for future developments in this area.
Resumo:
Pediatric renal transplantation (TX) has evolved greatly during the past few decades, and today TX is considered the standard care for children with end-stage renal disease. In Finland, 191 children had received renal transplants by October 2007, and 42% of them have already reached adulthood. Improvements in treatment of end-stage renal disease, surgical techniques, intensive care medicine, and in immunosuppressive therapy have paved the way to the current highly successful outcomes of pediatric transplantation. In children, the transplanted graft should last for decades, and normal growth and development should be guaranteed. These objectives set considerable requirements in optimizing and fine-tuning the post-operative therapy. Careful optimization of immunosuppressive therapy is crucial in protecting the graft against rejection, but also in protecting the patient against adverse effects of the medication. In the present study, the results of a retrospective investigation into individualized dosing of immunosuppresive medication, based on pharmacokinetic profiles, therapeutic drug monitoring, graft function and histology studies, and glucocorticoid biological activity determinations, are reported. Subgroups of a total of 178 patients, who received renal transplants in 1988 2006 were included in the study. The mean age at TX was 6.5 years, and approximately 26% of the patients were <2 years of age. The most common diagnosis leading to renal TX was congenital nephrosis of the Finnish type (NPHS1). Pediatric patients in Finland receive standard triple immunosuppression consisting of cyclosporine A (CsA), methylprednisolone (MP) and azathioprine (AZA) after renal TX. Optimal dosing of these agents is important to prevent rejections and preserve graft function in one hand, and to avoid the potentially serious adverse effects on the other hand. CsA has a narrow therapeutic window and individually variable pharmacokinetics. Therapeutic monitoring of CsA is, therefore, mandatory. Traditionally, CsA monitoring has been based on pre-dose trough levels (C0), but recent pharmacokinetic and clinical studies have revealed that the immunosuppressive effect may be related to diurnal CsA exposure and blood CsA concentration 0-4 hours after dosing. The two-hour post-dose concentration (C2) has proved a reliable surrogate marker of CsA exposure. Individual starting doses of CsA were analyzed in 65 patients. A recommended dose based on a pre-TX pharmacokinetic study was calculated for each patient by the pre-TX protocol. The predicted dose was clearly higher in the youngest children than in the older ones (22.9±10.4 and 10.5±5.1 mg/kg/d in patients <2 and >8 years of age, respectively). The actually administered oral doses of CsA were collected for three weeks after TX and compared to the pharmacokinetically predicted dose. After the TX, dosing of CsA was adjusted according to clinical parameters and blood CsA trough concentration. The pharmacokinetically predicted dose and patient age were the two significant parameters explaining post-TX doses of CsA. Accordingly, young children received significantly higher oral doses of CsA than the older ones. The correlation to the actually administered doses after TX was best in those patients, who had a predicted dose clearly higher or lower (> ±25%) than the average in their age-group. Due to the great individual variation in pharmacokinetics standardized dosing of CsA (based on body mass or surface area) may not be adequate. Pre-Tx profiles are helpful in determining suitable initial CsA doses. CsA monitoring based on trough and C2 concentrations was analyzed in 47 patients, who received renal transplants in 2001 2006. C0, C2 and experienced acute rejections were collected during the post-TX hospitalization, and also three months after TX when the first protocol core biopsy was obtained. The patients who remained rejection free had slightly higher C2 concentrations, especially very early after TX. However, after the first two weeks also the trough level was higher in the rejection-free patients than in those with acute rejections. Three months after TX the trough level was higher in patients with normal histology than in those with rejection changes in the routine biopsy. Monitoring of both the trough level and C2 may thus be warranted to guarantee sufficient peak concentration and baseline immunosuppression on one hand and to avoid over-exposure on the other hand. Controlling of rejection in the early months after transplantation is crucial as it may contribute to the development of long-term allograft nephropathy. Recently, it has become evident that immunoactivation fulfilling the histological criteria of acute rejection is possible in a well functioning graft with no clinical sings or laboratory perturbations. The influence of treatment of subclinical rejection, diagnosed in 3-month protocol biopsy, to graft function and histology 18 months after TX was analyzed in 22 patients and compared to 35 historical control patients. The incidence of subclinical rejection at three months was 43%, and the patients received a standard rejection treatment (a course of increased MP) and/or increased baseline immunosuppression, depending on the severity of rejection and graft function. Glomerular filtration rate (GFR) at 18 months was significantly better in the patients who were screened and treated for subclinical rejection in comparison to the historical patients (86.7±22.5 vs. 67.9±31.9 ml/min/1.73m2, respectively). The improvement was most remarkable in the youngest (<2 years) age group (94.1±11.0 vs. 67.9±26.8 ml/min/1.73m2). Histological findings of chronic allograft nephropathy were also more common in the historical patients in the 18-month protocol biopsy. All pediatric renal TX patients receive MP as a part of the baseline immunosuppression. Although the maintenance dose of MP is very low in the majority of the patients, the well-known steroid-related adverse affects are not uncommon. It has been shown in a previous study in Finnish pediatric TX patients that steroid exposure, measured as area under concentration-time curve (AUC), rather than the dose correlates with the adverse effects. In the present study, MP AUC was measured in sixteen stable maintenance patients, and a correlation with excess weight gain during 12 months after TX as well as with height deficit was found. A novel bioassay measuring the activation of glucocorticoid receptor dependent transcription cascade was also employed to assess the biological effect of MP. Glucocorticoid bioactivity was found to be related to the adverse effects, although the relationship was not as apparent as that with serum MP concentration. The findings in this study support individualized monitoring and adjustment of immunosuppression based on pharmacokinetics, graft function and histology. Pharmacokinetic profiles are helpful in estimating drug exposure and thus identifying the patients who might be at risk for excessive or insufficient immunosuppression. Individualized doses and monitoring of blood concentrations should definitely be employed with CsA, but possibly also with steroids. As an alternative to complete steroid withdrawal, individualized dosing based on drug exposure monitoring might help in avoiding the adverse effects. Early screening and treatment of subclinical immunoactivation is beneficial as it improves the prospects of good long-term graft function.
Resumo:
Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional (3D) multicellular spheroids, formed from mesenchymal stem/stromal cells (MSC) might improve direct BM transplantation. To test this hypothesis, relevant combinations of human umbilical cord blood-derived CD34(+) cells and BM-derived MSC were transplanted into NOD/SCID gamma (NSG) mice using either IV or intrafemoral (IF) routes. IF transplantation resulted in higher human CD45(+) and CD34(+) cell engraftment within injected femurs relative to distal femurs regardless of cell combination, but did not improve overall CD45(+) engraftment at 8 weeks. Analysis within individual mice revealed that despite engraftment reaching near saturation within the injected femur, engraftment at distal hematopoietic sites including peripheral blood, spleen and non-injected femur, could be poor. Our data suggest that the retention of human HSC within the BM following direct BM injection enhances local chimerism at the expense of systemic chimerism in this xenogeneic model.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
Liver transplantation is an established therapy for both acute and chronic liver failure. Despite excellent long-term outcome, graft dysfunction remains a problem affecting up to 15-30% of the recipients. The etiology of dysfunction is multifactorial, with ischemia-reperfusion injury regarded as one of the most important contributors. This thesis focuses on the inflammatory response during graft procurement and reperfusion in liver transplantation in adults. Activation of protein C was examined as a potential endogenous anti-inflammatory mechanism. The effects of inflammatory responses on graft function and outcome were investigated. Seventy adult patients undergoing liver transplantation in Helsinki University Central Hospital, and 50 multiorgan donors, were studied. Blood samples from the portal and the hepatic veins were drawn before graft procurement and at several time points during graft reperfusion to assess changes within the liver. Liver biopsies were taken before graft preservation and after reperfusion. Neutrophil and monocyte CD11b and L-selectin expression were analysed by flow cytometry. Plasma TNF-α, IL-6, IL-8, sICAM-1, and HMGB1 were determined by ELISA and Western-blotting. HMGB1 immunohistochemistry was performed on liver tissue specimens. Plasma protein C and activated protein C were determined by an enzyme-capture assay. Hepatic IL-8 release during graft procurement was associated with subsequent graft dysfunction, biliary in particular, in the recipient. Biliary marker levels increased only 5 7 days after transplantation. Thus, donor inflammatory response appears to influence recipient liver function with relatively long-lasting effects. Hepatic phagocyte activation and sequestration, with concomitant HMGB1 release, occurred during reperfusion. Neither phagocyte activation nor plasma cytokines correlated with postoperative graft function. Thus, activation of the inflammatory responses within the liver during reperfusion may be of minor clinical significance. However, HMGB1 was released from hepatocytes and were also correlated with postoperative transaminase levels. Accordingly, HMGB1 appears to be a marker of hepatocellular injury.
Resumo:
The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.
Resumo:
Heart failure is a common, severe, and progressive condition associated with high mortality and morbidity. Because of population-aging in the coming decades, heart failure is estimated to reach epidemic proportions. Current medical and surgical treatments have reduced mortality, but the prognosis for patients has remained poor. Transplantation of skeletal myoblasts has raised hope of regenerating the failing heart and compensating for lost cardiac contractile tissue. In the present work, we studied epicardial transplantation of tissue-engineered myoblast sheets for treatment of heart failure. We employed a rat model of myocardial infarction-induced acute and chronic heart failure by left anterior descending coronary artery ligation. We then transplanted myoblast sheets genetically modified to resist cell death after transplantation by expressing antiapoptotic gene bcl2. In addition, we evaluated the regenerative capacity of myoblast sheets expressing the cardioprotective cytokine hepatocyte growth factor in a rat chronic heart failure model. Furthermore, we utilized in vitro cardiomyocyte and endothelial cell culture models as well as microarray gene expression analysis to elucidate molecular mechanisms mediating the therapeutic effects of myoblast sheet transplantation. Our results demonstrate that Bcl2-expression prolonged myoblast sheet survival in rat hearts after transplantation and induced secretion of cardioprotective, proangiogenic cytokines. After acute myocardial infarction, these sheets attenuated left ventricular dysfunction and myocardial damage, and they induced therapeutic angiogenesis. In the chronic heart failure model, inhibition of graft apoptosis by Bcl-2 improved cardiac function, supported survival of cardiomyocytes in the infarcted area, and induced angiogenesis in a vascular endothelial growth factor receptor 1- and 2-dependent mechanism. Hepatocyte growth factor-secreting myoblast sheets further enhanced the angiogenic efficacy of myoblast sheet therapy. Moreover, myoblast-secreted paracrine factors protected cardiomyocytes against oxidative stress in an epidermal growth factor receptor- and c-Met dependent manner. This protection was associated with induction of antioxidative genes and activation of the unfolded protein response. Our results provide evidence that inhibiting myoblast sheet apoptosis can enhance the sheets efficacy for treating heart failure after acute and chronic myocardial infarction. Furthermore, we show that myoblast sheets can serve as vehicles for delivery of growth factors, and induce therapeutic angiogenesis in the chronically ischemic heart. Finally, myoblasts induce, in a paracine manner, a cardiomyocyte-protective response against oxidative stress. Our study elucidates novel mechanisms of myoblast transplantation therapy, and suggests effective means to improve this therapy for the benefit of the heart failure patient.
Resumo:
Perfusion of liver with plasmid DNA-lipofectin complexes via the portal vein results in efficient accumulation of the vector in hepatocytes. Such hepatocytes, when administered intraperitoneally into a hepatectomized rat, repopulate the liver and express the transgene efficiently. This procedure obviates the need for large-scale hepatocyte culture for ex vivo gene transfer. Further, intraperitoneal transplantation is a simple and cost-effective strategy of introducing genetically modified hepatocytes into liver. Thus, in situ lipofection of liver and intraperitoneal transfer of hepatocytes can be developed into a novel method of non-viral ex vivo gene transfer technique that has applications in the treatment of metabolic disorders of liver and hepatic gene therapy.