964 resultados para Transcription génique
Resumo:
An in vitro transcription system from Candida utilis is described. The template used is a hybrid plasmid containing Saccharomyces cerevisiae CYC1 promoter linked to a synthetic 377-bp G-minus casette (1). In vitro transcriptions are carried out in the presence of RNase. T1. Under these conditions only the transcripts that are resistant to RNase T1 accumulate. Using this protocol, it has been shown that in the absence of cytosolic factors RNA polymerase II (pol II) from C. utilis initiated RNA synthesis randomly. But both C. utilis and S. cerevisiae cell-free extracts could direct pol II from C. utilis to initiate transcription accurately. Results also indicated that the general transcription factors are functionally interchangeable between S. cerevisiae and C. utilis
Resumo:
We present WebGeSTer DB, the largest database of intrinsic transcription terminators (http://pallab.serc.iisc.ernet.in/gester). The database comprises of a million terminators identified in 1060 bacterial genome sequences and 798 plasmids. Users can obtain both graphic and tabular results on putative terminators based on default or user-defined parameters. The results are arranged in different tiers to facilitate retrieval, as per the specific requirements. An interactive map has been incorporated to visualize the distribution of terminators across the whole genome. Analysis of the results, both at the whole-genome level and with respect to terminators downstream of specific genes, offers insight into the prevalence of canonical and non-canonical terminators across different phyla. The data in the database reinforce the paradigm that intrinsic termination is a conserved and efficient regulatory mechanism in bacteria. Our database is freely accessible.
Resumo:
The region -160 to -127 nt of the upstream of CYP-2B1/B2 gene has been found to function as a negative cis-acting element on the basis of DNase-I footprint and gel mobility shift assays as well as cell-free transcriptional assays using Bal-31 mutants. A reciprocal relationship in the interaction of the negative and the recently characterized positive elements with their respective protein factors has been found under repressed and induced conditions of the gene. The negative element also harbors the core glucocorticoid responsive sequence, TGTCCT. It is concluded that the negative element mediates the repressed state of the gene under the uninduced condition and also mediates the repressive effect of dexamethasone, when given along with the inducer phenobarbitone in rats. Dexamethasone is able to antagonize the effects of phenobarbitone at as low a concentration as 100 mu g/kg body wt in these animals. (C) 1995 Academic Press,Inc.
Resumo:
An in vitro transcription system for rinderpest virus (RPV) is described. Ribonucleoprotein complexes isolated from RPV-infected Vero cells, human lung carcinoma cells, or detergent-disrupted purified virions synthesized authentic RPV mRNAs for the N, P, M, F and H genes as identified by dot blot hybridization analysis with individual cDNA clones. The relative abundance of the mRNAs synthesized in vitro decreased from the 3? end of the genome to the 5? end, very similar to that observed with measles virus transcription in vitro. The transcription by purified virions was stimulated three-fold by the addition of infected human lung carcinoma cell lysate, demonstrating the involvement of host factor(s) in mRNA synthesis.
Resumo:
Fractionation of nuclear extracts from posterior silk glands of mulberry silkworm Bombyx mori. resolved the transcription factor TFIIIC into two components (designated here as TFIIIC and TFIIIC1) as in HeLa cell nuclear extracts. The reconstituted transcription of tRNA genes required the presence of both components. The affinity purified TFIIIC is a heteromeric complex comprising of five subunits ranging from 44 to 240 kDa. Of these, the 51-kDa subunit could be specifically crosslinked to the B box of tRNA(1)(Gly). Purified swTFIIIC binds to the B box sequences with an affinity in the same range as of yTFIIIC or hTFIIIC2. Although an histone acetyl transferase (HAT) activity was associated with the TFIIIC fractions during the initial stages of purification. the HAT activity, unlike the human TFIIIC preparations, was separated at the final DNA affinity step. The tRNA transcription from DNA template was independent of HAT activity but the repressed transcription from chromatin template could be partially restored by external supplementation of the dissociated HAT activity. This is the first report on the purification and characterization of TFIIIC from insect systems.
Resumo:
The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 -> S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 -> S arrest is discussed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Development of multidrug resistance (MDR) is a major deterrent in the effective treatment of metastatic cancers by chemotherapy. Even though MDR and cancer invasiveness have been correlated, the molecular basis of this link remains obscure. We show here that treatment with chemotherapeutic drugs increases the expression of several ATP binding cassette transporters (ABC transporters) associated with MDR, as well as epithelial-mesenchymal transition (EMT) markers, selectively in invasive breast cancer cells, but not in immortalized or non-invasive cells. Interestingly, the mere induction of an EMT in immortalized and non-invasive cell lines increased their expression of ABC transporters, migration, invasion, and drug resistance. Conversely, reversal of EMT in invasive cells by downregulating EMT-inducing transcription factors reduced their expression of ABC transporters, invasion, and rendered them more chemosensitive. Mechanistically, we demonstrate that the promoters of ABC transporters carry several binding sites for EMT-inducing transcription factors, and overexpression of Twist, Snail, and FOXC2 increases the promoter activity of ABC transporters. Furthermore, chromatin immunoprecipitation studies revealed that Twist binds directly to the E-box elements of ABC transporters. Thus, our study identifies EMT inducers as novel regulators of ABC transporters, thereby providing molecular insights into the long-standing association between invasiveness and MDR. Targeting EMT transcription factors could hence serve as novel strategies to curb both metastasis and the associated drug resistance. Cell Death and Disease (2011) 2, e179; doi:10.1038/cddis.2011.61; published online 7 July 2011
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.
Resumo:
Although sequencing of Mycobacterium tuberculosis genome lead to better understanding of transcription units and gene functions, interactions occurring during transcription initiation between RNA polymerase and promoters is yet to be elucidated. Different stages of transcription initiation include promoter specific binding of RNAP, isomerization, abortive initiation and promoter clearance. We have now analyzed these events with four promoters of M. tuberculosis viz. P-gyrB1, P-gyrR, P-rrnPCL1 and P-metU. The promoters differed from each other in their rates of open complex formation, decay, promoter clearance and abortive transcription. The equilibrium binding and kinetic studies of various steps revealed distinct rate limiting events for each of the promoter, which also differed markedly in their characteristics from the respective promoters of Mycobacterium smegmatis. Surprisingly, the transcription at gyr promoter was enhanced in the presence of initiating nucleotides and decreased in the presence of alarmone, pppGpp, a pattern typically seen with rRNA promoters studied so far. The gyr promoter of M. smegmatis, on the other hand, was not subjected to pppGpp mediated regulation. The marked differences in the transcription initiation pathway seen with rrn and gyr promoters of M. smegmatis and M. tuberculosis suggest that such species specific differences in the regulation of expression of the crucial housekeeping genes could be one of the key determinants contributing to the differences in growth rate and lifestyle of the two organisms. Moreover, the distinct rate limiting steps during transcription initiation of each one of the promoters studied point at variations in their intracellular regulation.
Resumo:
Organogels made of pyridine-end oligo-p-phenylenevinylenes with tartaric acid exhibit remarkable J-aggregation induced red-shifts (Dk = 55 nm) and notable chirality transcription. Induction of liquid-crystalline behavior is also tuned in the supramolecular assembly.
Resumo:
Muscle development is a multistep process which includes myoblast diversification, proliferation, migration, fusion, differentiation and growth. A hierarchical exhibition of myogenic factors is important for dexterous execution of progressive events in muscle formation. EWG (erect wing) is a transcription factor known to have a role in indirect flight muscle development (IFM) in Drosophila. We marked out the precise spatio-temporal expression profile of EWG in the myoblasts, and in the developing muscles. Mutant adult flies null for EWG in myoblasts show variable number of IFM, suggesting that EWG is required for patterning of the IFM. The remnant muscle found in the EWG null flies show proper assembly of the structural proteins, which implies that some myoblasts manage to fuse, develop and differentiate normally indicating that EWG is not required for differentiation program per se. However, when EWG expression is extended beyond its expression window in a wild type background, muscle thinning is observed implying EWG function in protein synthesis inhibition. Mis-expression studies in wing disc myoblasts hinted at its role in myoblast proliferation. We thus conclude that EWG is important for regulating fusion events which in turn decides the IFM pattern. Also IFM in EWG null mutants show clumps containing broken fibres and an altered mitochondrial morphology. The vertebrate homolog of EWG is nuclear respiratory factor1 (NRF1) which is known to have a function in mitochondrial biogenesis and protection against oxidative stress. Gene expression for inner mitochondrial membrane protein, Opa1-like was found to be absent in these mutants. Also, these flies were more sensitive to oxidative stress, indicating a compromised mitochondrial functioning. Our results therefore demonstrate that EWG functions in maintaining muscles’ structural integrity by ensuing proper mitochondrial activity.