969 resultados para Topologia algebrica, omologia persitente, teoria della taglia
Resumo:
In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.
Resumo:
Nella prima parte di questo progetto di tesi, ho analizzato tutte le nozioni teoriche rilevanti in merito alla teoria della transizione. Il primo concetto condiviso in questa trattazione è quello di transizione. Nella parte finale del capitolo, il focus si sposta sul ruolo, in una generica transizione, delle nicchie. Lo strumento centrale in questa struttura sono gli esperimenti di transizione, i quali forniscono un approccio alternativo ai progetti di innovazione classica che sono incentrati nell'ottenimento di soluzioni a breve termine. Vi è dunque una forte relazione tra nicchia e sperimentazione. Infine la trattazione si concentra sul tema dello Strategic Niche Management. Nel secondo capitolo, analizzo il tema della sostenibilità inserita in un contesto universitario. Questa sezione si focalizza sulle strategie di alto livello richieste per dare avvio alla transizione universitaria verso la sostenibilità, identificando gli ostacoli e gli elementi portanti, e definendo una vision al fine di concretizzarla. Il capitolo guida, passo per passo, le università che tentano di mettere in pratica il proprio obiettivo e la vision di sviluppo sostenibile. Una delle problematiche principali per stimare gli sforzi verso la sostenibilità nelle università è costituita in modo particolare dagli strumenti di valutazione. Per questo motivo, è stata sviluppata la valutazione grafica della sostenibilità nell'università (GASU). Al fine di riassumere quanto detto fin qui ed avere un quadro generale più chiaro dell'organizzazione di un campus universitario che mira a diventare sostenibile, ho utilizzato lo strumento gestionale della SWOT Analysis. Negli ultimi due capitoli, infine, analizzo nel dettaglio il modello Green Office. La teorizzazione di questo modello e l'elaborazione dei 6 principi del Green Office sono state effettuate da rootAbility. Le seguenti pagine presentano 3 casi studio di come i 6 principi dei Green Office sono stati adattati alle 3 unità di sostenibilità guidate da studenti e supportate da staff qualificato. L'oggetto della trattazione sono i principali GO affermatisi nei Paesi Bassi. A seguito dell'introduzione del modello relativo al Green Office e dell'illustrazione degli esempi presi in esame, è stato sfruttato lo strumento della feasibility analysis al fine di giudicare se l'idea di business sia praticabile. Il mezzo con cui ho condotto l'analisi sotto riportata è un questionario relativo al modello di Green Office implementato, nel quale viene chiesto di valutare gli aspetti relativi alla organizational feasibility e alla financial feasibility. Infine nella sezione finale ho considerato i Green Office come fossero un unico movimento. L'analisi mira a considerare l'impatto globale del Green Office Movement nei sistemi universitari e come, a seguito del loro consolidarsi nella struttura accademica, possano divenire prassi comune. La struttura proposta contiene elementi sia da il SNM (Strategic Niche Management) che dal TE (Transition Experiment).
Resumo:
Sostituzione di tessuto urbano nella città di Mirandola. Tentativo di ridefinizione dell'identità del viale di collegamento fra centro storico e stazione attraverso lo studio della teoria della città per parti.
Resumo:
Obiettivo della tesi è fornire nozioni di teoria della misura tramite cui è possibile l'analisi e la descrizione degli insiemi frattali. A tal fine vengono definite la Misura e la Dimensione di Hausdorff, strumenti matematici che permettono di "misurare" tali oggetti particolari, per i quali la classica Misura di Lebesgue non risulta sufficientemente precisa. Viene introdotto, inoltre, il carattere di autosimilarità, comune a molti di questi insiemi, e sono forniti alcuni tra i più noti esempi di frattali, come l'insieme di Cantor, l'insieme di Mandelbrot e il triangolo di Sierpinski. Infine, viene verificata l'ipotesi dell'esistenza di componenti di natura frattale in serie storiche di indici borsistici e di titoli finanziari (Ipotesi dei Mercati Frattali, Peters, 1990).
Resumo:
In questa tesi viene presentato un bioreattore in grado di mantenere nel tempo condizioni biologiche tali che consentano di massimizzare i cicli di evoluzione molecolare di vettori di clonazione fagici: litico (T7) o lisogeno (M13). Verranno quindi introdtti concetti legati alla Teoria della Quasispecie e alla relazione tra errori di autoreplicazione e pressioni selettive naturali o artificiali su popolazioni di virus: il modello naturale del sistema evolutivo. Tuttavia, mantenere delle popolazioni di virus significa formire loro un substrato dove replicare. Per fare ciò, altri gruppi di ricerca hanno giá sviluppato complessi e costosi prototipi di macchinari per la crescita continua di popolazioni batteriche: i compartimenti dei sistemi evolutivi. Il bioreattore, oggetto di questo lavoro, fa parte del progetto europeo Evoprog: general purpose programmable machine evolution on a chip (Jaramillo’s Lab, University of Warwick) che, utilizzando tecnologie fagiche e regolazioni sintetiche esistenti, sará in grado di produrre funzionalità biocomputazionali di due ordini di grandezza più veloci rispetto alle tecniche convenzionali, riducendo allo stesso tempo i costi complessivi. Il primo prototipo consiste in uno o piú fermentatori, dove viene fatta crescere la cultura batterica in condizioni ottimizzate di coltivazione continua, e in un cellstat, un volume separato, dove avviene solo la replicazione dei virus. Entrambi i volumi sono di pochi millilitri e appropriatamente interconnessi per consentire una sorta di screening continuo delle biomolecole prodotte all’uscita. Nella parte finale verranno presentati i risultati degli esperimenti preliminari, a dimostrazione dell’affidabilità del prototipo costruito e dei protocolli seguiti per la sterilizzazione e l’assemblaggio del bioreattore. Gli esperimenti effettuati dimostrano il successo di due coltivazioni virali continue e una ricombinazione in vivo di batteriofagi litici o lisogeni ingegnerizzati. La tesi si conclude valutando i futuri sviluppi e i limiti del sistema, tenendo in considerazione, in particolare, alcune applicazioni rivolte agli studi di una terapia batteriofagica.
Resumo:
In questo lavoro di ricerca ho esaminato la Teoria della Transizione e più nello specifico lo sviluppo di un possibile Living Lab della sostenibilità nel contesto universitario. In primo luogo, ho analizzato la situazione attuale per quanto riguarda lo sviluppo sostenibile in un contesto generale. Inoltre ho dovuto analizzare anche quali sono gli indici che usiamo per definire il benessere umano e su cui basiamo la nostra intera economia, come ad esempio il PIL. In secondo luogo, ho definito la Teoria della Transizione in ambito generale elencandone i vari strumenti di applicazione e i metodi. In fine ho cercato di applicare la Teoria della Transizione nel contesto della sostenibilità in ambito universitario, utilizzando i progetti di Transizione attraverso i Living Lab di “Terracini in Transizione” dell’Università di Bologna e “GOU Living Lab” dell’Università di Utrecht. Dai risultati ottenuti ho definito i limiti e le potenzialità che questi progetti di Living Lab avevano attraverso l’utilizzo della SWOT analysis. La quale ha evidenziato la necessità della costituzione di un gruppo all’interno dell’Università di Bologna che si occupi della gestione dei progetti green di Transizione, come nel contesto in cui mi sono venuto a trovare nell’Università di Utrecht con la presenza del Green Office.
Resumo:
Questo elaborato finale analizza la mia proposta di traduzione di parte del sito internet www.turismo.ra.it. Ho intrapreso la traduzione delle pagine di questo sito nel quadro di una collaborazione volontaria con il Comune di Ravenna; anche il mio tirocinio curricolare si è concentrato sulla traduzione del sito. Ho deciso dunque di articolare la tesi come segue: il primo capitolo, si concentra sulla teoria dei siti internet e sulla loro organizzazione, focalizzando l’interesse sulle modalità di scrittura sul web, mentre il secondo capitolo tratta l’analisi del sito, ponendo particolare attenzione alla sua struttura. La mia proposta di traduzione segue poi nel terzo capitolo, mentre nel quarto offro una possibile analisi dei testi tradotti, con commenti relativi agli aspetti linguistici e alle difficoltà riscontrate, e analizzando la memoria di traduzione da me creata nel corso della mia attività. L’elaborato si conclude con alcune mie considerazioni finali circa l’attività svolta, e la bibliografia, con annessa sitografia, da me consultate per lo svolgimento del mio lavoro di ricerca.
Resumo:
Lo scopo di questa tesi è illustrare il paradigma dell’inflazione cosmologica descrivendo in particolare la teoria dell’inflazione R^2. In una prima sezione si fa riferimento al contesto della relatività generale per descrivere l’universo su larga scala. Vengono prese in esame le ipotesi utilizzate per ottenere il modello standard della cosmologia e le principali proprietà che da esso possono essere ricavate. Si focalizza quindi l’analisi sulla descrizione dell’universo primordiale da cui traggono origine le ipotesi dell’esistenza dell’epoca inflazionaria esponendo, in particolare, come questa teoria riesca a risolvere i problemi della piattezza e dell’orizzonte cosmologico. Viene poi descritto come la fase di espansione esponenziale richiesta da queste ipotesi possa essere generata dalla presenza di un campo scalare φ specifico. Particolare risalto è dato alla descrizione dell’approssimazione di ”slow-roll” ed ai vincoli sul numero di ”e-folding”. Una seconda sezione mostra l’applicazione dell’analisi generale esposta in precedenza al modello di inflazione di Starobinsky. A tal fine sono descritte le caratteristiche delle teorie della gravità f(R) con particolare attenzione alle trasformazioni conformi e scelta del frame. Attraverso l’esposizione delle equazioni di campo cosmologiche nella teoria della gravità R^2 si mostra come il processo di espansione inflazionaria dell’universo nelle sue fasi iniziali possa essere descritto da un comportamento non standard della gravità ad alte energie. Sono riportati i risultati principali ottenuti con questa teoria nel frame di Jordan e in quello di Einstein. La conclusione descrive in sintesi lo stato attuale delle osservazioni sperimentali e come queste abbiano un legame stretto con la teoria delle perturbazioni cosmologiche. In particolare, presentando i risultati ottenuti nel contesto dell’inflazione R^2 ed esponendo gli ultimi dati raccolti dall’esperimento Planck, si analizza come il modello sia in accordo con i dati sperimentali attualmente disponibili.
Resumo:
Il seguente elaborato si prefigge di esporre in modo chiaro la teoria delle misure deboli in meccanica quantistica. Tale teoria ha aperto nuovi scenari all'interno dell'interpretazione fisica del mondo quantistico e allo stesso tempo ha fornito alla fisica sperimentale una nuova tecnica per esplorare i fenomeni microscopici. Il progetto si divide in tre capitoli; nel primo capitolo vengono esposti i concetti chiave della teoria della misura in meccanica quantistica utili all'introduzione del secondo capitolo, ove viene trattata la teoria delle misure deboli. Infine nell'ultimo capitolo viene esposta la parte applicativa e in particolare viene discusso un esperimento della doppia fenditura, svoltosi all'università di Toronto con l'utilizzo delle misure deboli.
Resumo:
Questa tesi si pone l'obiettivo di presentare la teoria dei giochi, in particolare di quelli cooperativi, insieme alla teoria delle decisioni, inquadrandole formalmente in termini di matematica discreta. Si tratta di due campi dove l'indagine si origina idealmente da questioni applicative, e dove tuttavia sono sorti e sorgono problemi più tipicamente teorici che hanno interessato e interessano gli ambienti matematico e informatico. Anche se i contributi iniziali sono stati spesso formulati in ambito continuo e utilizzando strumenti tipici di teoria della misura, tuttavia oggi la scelta di modelli e metodi discreti appare la più idonea. L'idea generale è quindi quella di guardare fin da subito al complesso dei modelli e dei risultati che si intendono presentare attraverso la lente della teoria dei reticoli. Ciò consente di avere una visione globale più nitida e di riuscire agilmente ad intrecciare il discorso considerando congiuntamente la teoria dei giochi e quella delle decisioni. Quindi, dopo avere introdotto gli strumenti necessari, si considerano modelli e problemi con il fine preciso di analizzare dapprima risultati storici e solidi, proseguendo poi verso situazioni più recenti, più complesse e nelle quali i risultati raggiunti possono suscitare perplessità. Da ultimo, vengono presentate alcune questioni aperte ed associati spunti per la ricerca.
Resumo:
La tesi analizza l'estensione del calcolo classico, il calcolo frazionario, descrivendone le proprietà principali e dandone esempi concreti. Si procede con la definizione di indice di Hurst e di moto Browniano frazionario. Si vede poi come è possibile estendere il calcolo frazionario al calcolo stocastico rispetto ad un moto Browniano frazionario. Infine, si richiamano alcuni concetti di teoria della probabilità.
Resumo:
Il seguente elaborato presenta una proposta di traduzione dei primi due capitoli del romanzo autopubblicato “Summer at sea” della scrittrice americana Beth Labonte, uscito nel 2015. L'elaborato si articola a partire da un'analisi approfondita del genere della chick lit, cui il romanzo appartiene, e prosegue con un riassunto delle principali tappe all'interno della storia della teoria della traduzione. Segue il commento alla traduzione, che evidenzia le difficoltà riscontrate e le soluzioni traduttive impiegate durante la stesura dell’elaborato.
Resumo:
Il presente elaborato vuole illustrare alcuni risultati matematici di teoria della misura grazie ai quali si sono sviluppate interessanti conseguenze nel campo della statistica inferenziale relativamente al concetto di statistica sufficiente. Il primo capitolo riprende alcune nozioni preliminari e si espone il teorema di Radon-Nikodym, sulle misure assolutamente continue, con conseguente dimostrazione. Il secondo capitolo dal titolo ‘Applicazioni alla statistica sufficiente’ si apre con le definizioni degli oggetti di studio e con la presentazione di alcune loro proprietà matematiche. Nel secondo paragrafo si espongono i concetti di attesa condizionata e probabilità condizionata in relazione agli elementi definiti nel paragrafo iniziale. Si entra nel corpo di questo capitolo con il terzo paragrafo nel quale definiamo gli insiemi di misura, gli insiemi di misura dominati e il concetto di statistica sufficiente. Viene qua presentato un importante teorema di caratterizzazione delle statistiche sufficienti per insiemi dominati e un suo corollario che descrive la relativa proprietà di fattorizzazione. Definiamo poi gli insiemi omogenei ed esponiamo un secondo corollario al teorema, relativo a tali insiemi. Si considera poi l’esempio del controllo di qualità per meglio illustrare la nozione di statistica sufficiente osservando una situazione più concreta. Successivamente viene introdotta la nozione di statistica sufficiente a coppie e viene enunciato un secondo teorema di caratterizzazione in termini di rapporto di verosimiglianza. Si procede quindi ad un confronto tra questi due tipi di sufficienza. Tale confronto viene operato in due situazioni differenti e porta a risultati diversi per ogni caso. Si conclude dunque l’elaborato marcando ancora l’effettiva bontà di una statistica sufficiente in termini di informazioni contenute al suo interno.
Resumo:
Questa tesi illustra il teorema di decomposizione delle misure e come questo viene applicato alle trasformazioni che conservano la misura. Dopo aver dato le definizioni di σ-algebra e di misura ed aver enunciato alcuni teoremi di teoria della misura, si introducono due differenti concetti di separabilità: quello di separabilità stretta e quello di separabilità, collegati mediante un lemma. Si descrivono poi la funzione di densità relativa e le relative proprietà e, dopo aver definito il concetto di somma diretta di spazi di misura, si dimostra il teorema di decomposizione delle misure, che permette sotto certe ipotesi di esprimere uno spazio di misura come somma diretta di spazi di misura. Infine, dopo aver spiegato cosa significa che una trasformazione conserva la misura e che è ergodica, si dimostra il teorema di Von Neumann, per il quale le trasformazioni che conservano la misura risultano decomponibili in parti ergodiche.
Resumo:
Il presente lavoro si propone di sviluppare una analogia formale tra sistemi dinamici e teoria della computazione in relazione all’emergenza di proprietà biologiche da tali sistemi. Il primo capitolo sarà dedicato all’estensione della teoria delle macchine di Turing ad un più ampio contesto di funzioni computabili e debolmente computabili. Mostreremo quindi come un sistema dinamico continuo possa essere elaborato da una macchina computante, e come proprietà informative quali l’universalità possano essere naturalmente estese alla fisica attraverso questo ponte formale. Nel secondo capitolo applicheremo i risultati teorici derivati nel primo allo sviluppo di un sistema chimico che mostri tali proprietà di universalità, ponendo particolare attenzione alla plausibilità fisica di tale sistema.