970 resultados para TiO(2) nanoparticle


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5PbMg(1/3)Nb(2/3)O(3)-0.5Ba(x)Pb((1-x))TiO(3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 mn for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 degrees C for 4 h. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synthesis of La1-xSrxMnO3 (x = 0.1, 0.2 and 0.3) by homogenous coprecipitation method using urea as precipitant agent Is reported. The particles are smaller than 200 nm after heating at 950 degreesC. Temperature dependence of the electrical resistivity was found to be similar to the reported value for single crystals of these manganites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor-mediated photocatalytic oxidation is an interesting method for water decontamination and a specially modified TiO2 is said to be a promising material. This study verified that the synthesis of 1wt%Ag modified-Sc0.01Ti0.99O1.995 powder samples prepared by Polymeric Precursor Method is capable of forming a mixture of anatase-rutile phase with high photocatalytic performance. This kind of material is found to have a lower bandgap compared to the TiO2-anatase commercial powders, which can be associated to an innovative hybrid modification. The simultaneous insertion of scandium in order to generate a p-type semiconductor and a metallic silver nanophase acting as an electron trapper demonstrated being capable of enhancing the degradation of rhodamine B compared to the commercial TiO2. In spite of the different thermal treatments or phase amounts, the hybrid modified powder samples showed higher photocatalytic activity than the commercial ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 °C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal oxide-semiconductor capacitors with TiO(x) deposited with different O(2) partial pressures (30%, 35%, and 40%) and annealed at 550, 750, and 1000 degrees C were fabricated and characterized. Fourier transform infrared, x-ray near edge spectroscopy, and elipsometry measurements were performed to characterize the TiO(x) films. TiO(x)N(y) films were also obtained by adding nitrogen to the gaseous mixture and physical results were presented. Capacitance-voltage (1 MHz) and current-voltage measurements were utilized to obtain the effective dielectric constant, effective oxide thickness, leakage current density, and interface quality. The results show that the obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density (for V(G)=-1 V, for some structures as low as 1 nA/cm(2), acceptable for complementary metal oxide semiconductor circuits fabrication), indicating that this material is a viable, in terms of leakage current density, highk substitute for current ultrathin dielectric layers. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3043537]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel magnetic nanocomposite films with controlled morphology were produced via the electrostatic layer-by-layer assembly of cationic CoFe(2)O(4) nanoparticles and anionic poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT:PSS) complex. The electrostatic interaction between nanoparticle and the polyelectrolyte complex ensured a stepwise growth of the nanocomposite film with virtually identical amounts of materials being adsorbed at each deposition cycle as observed by UV-vis spectroscopy. AFM images acquired under the tapping mode revealed a globular morphology with dense and continuous layers of nanoparticles with voids being filled with polymeric material. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic investigation of spinel ferrite nanoparticles dispersed in biocompatible polymeric microspheres is reported in this study. X-ray diffraction data analysis confirms the presence of nanosized CoFe(2)O(4) particles (mean size of similar to 8 nm). This finding is corroborated by transmission electron microscopy micrographs. Magnetization isotherms suggest a spin disorder likely occurring at the nanoparticle`s surface. The saturation magnetization value is used to estimate particle concentration of 1.6 x 10(18) cm(-3) dispersed in the polymeric template. A T(1/2) dependence of the coercive field is determined in the low-temperature region (T < 30 K). The model of non-interacting mono-domains is used to estimate an effective magnetic anisotropy of K(eff) = 0.6 x 10(5) J/m(3). The K(eff) value we found is lower than the value reported for spherically-shaped CoFe(2)O(4) nanoparticles, though consistent with the low coercive field observed in the investigated sample.