659 resultados para Ti-35Nb-7Zr-5Ta alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys normally contain oxygen, nitrogen, or carbon as impurities, and although this concentration is low, these impurities cause changes in the mechanical properties of Ti alloys. Oxygen is a strong alpha-phase stabilizer and its addition causes solid-solution strengthening, shape memory effect, and superelasticity. The most promising alloys are those with Nb, Zr, Ta, and Mo as alloying elements. In this paper, the preparation, processing, and characterization of Ti-Mo alloys (5 and 10 wt%) used as biomaterials are presented, along with the influence of oxygen on their mechanical properties. The addition of oxygen causes an increase in the elasticity modulus of the Ti-5Mo alloy due to an increase in the alpha' phase volume fraction, which possesses a higher modulus than the alpha '' phase. Ti-10Mo possesses a mixture between alpha '' and beta phases, oxygen enters these two structures and causes a dominating effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anelastic relaxation measurements were performed in a Nb-46wt%Ti alloy, in the temperature range of 300 to 700 K, using a torsion pendulum operating at an oscillating frequency near 2.0 Hz. The samples were measured in different conditions: cold worked, annealed in ultra-high vacuum and doped with several quantities of nitrogen. The relaxation spectra obtained were resolved into their component peaks, corresponding to the different kinds of interaction of the interstitial solutes with the metallic matrix. The relaxation parameters of each process were calculated using Debye's elementary peaks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses on the structural evaluation of mechanically alloyed and heat-treated Ti-25at%Si powders. The milling process was conducted in a planetary ball mill using stainless steel balls/vials, 200 rpm and ball-to-powder weight ratio of 5:1, whereas the heat treatment was conducted under Ar atmosphere at 1100 C for 4 h. Samples were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectrometry. The Si peaks disappeared after milling for 30h, indicating that the Si atoms were dissolved into the Ti lattice in order to form an extended solid solution. The Ti peaks were broadened and their intensities reduced for longer milling times whereas a halo was formed in Ti-25Si powders milled for 200h suggesting that an amorphous structure was achieved. The crystallite size was decreased with increasing milling times. A large Ti3Si amount was found in mechanically alloyed Ti-25at%Si powders after heating at 1100 degrees C for 4h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work reports on the structural evaluation of mechanically alloyed Ti-xZr-22Si-11B (x = 5, 7, 10, 15 and 20 at-%) powders. Milled powders and hot-pressed alloys were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. The Si and B atoms were preferentially dissolved into the Ti and Zr lattices during ball milling of Ti-xZr-22Si-11B (x = 7, 10, 15 and 20 at-%) powders, and extended solid solutions were achieved. The displacement of Ti peaks was more pronounced to the direction of lower diffraction angles with increasing Zr amounts in mechanically alloyed Ti-Zr-Si-B powders, indicating that the Zr atoms were also dissolved into the Ti lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue, corrosion and wear resistance are important parameters in aircraft components development as landing gear. High strength/weight ratio and effective corrosion resistance make of titanium alloys an alternative choice to replace steel and aluminum alloys. However, titanium alloys have poor tribological properties, which reduce devices performance under friction. PVD coatings tribological systems has been increased due to their attractive mechanical properties as low environmental impact, low friction coefficient, low wear rate and hardness up to 2000 HV.In this study the influence of TiN deposited by PVD on the fatigue strength of Ti-6Al-4V alloy was evaluated. Comparison of fatigue strength of coated specimens and base material shows also a decrease when parts are coated. It was observed that the influence is more significant in high cycle fatigue tests. Scanning electron microscopy technique (SEM) was used to observe crack origin sites and fracture features. (C) 2010 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)