956 resultados para Thin film filters
Resumo:
Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Practical phantoms are essential to assess the electrical impedance tomography (EIT) systems for their validation, calibration and comparison purposes. Metal surface electrodes are generally used in practical phantoms which reduce the SNR of the boundary data due to their design and development errors. Novel flexible and biocompatible gold electrode arrays of high geometric precision are proposed to improve the boundary data quality in EIT. The flexible gold electrode arrays are developed on flexible FR4 sheets using thin film technology and practical gold electrode phantoms are developed with different configurations. Injecting a constant current to the phantom boundary the surface potentials are measured by a LabVIEW based data acquisition system and the resistivity images are reconstructed in EIDORS. Boundary data profile and the resistivity images obtained from the gold electrode phantoms are compared with identical phantoms developed with stainless steel electrodes. Surface profilometry, microscopy and the impedance spectroscopy show that the gold electrode arrays are smooth, geometrically precised and less resistive. Results show that the boundary data accuracy and image quality are improved with gold electrode arrays. Results show that the diametric resistivity plot (DRP), contrast to noise ratio (CNR), percentage of contrast recovery (PCR) and coefficient of contrast (COC) of reconstructed images are improved in gold electrode phantoms. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
CuIn1-xAlxSe2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (Delta(SO)) and crystal field (Delta(CF)) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn1-xAlxSe2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A. M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 x 10(-3) A in the dark at 1 V to 3 x 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity R-lambda similar to 920 A W-1, sensitivity S similar to 9.0, specific detectivity D* similar to 3 x 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection.
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
Lithium manganese oxide (Li2-xMnO3-y) thin films have been deposited from activated Li2MnO3 powder by radio frequency magnetron sputtering for the first time in the literature and subjected to electrochemical characterization. Physicochemical characterization by X-ray diffraction has revealed the formation of the thin films with crystallographic phase identical to that of the powder target made of Li2-xMnO3-y. The Li:Mn atomic ratio for the powder and film are calculated by X-ray photoelectron spectroscopy and it is found to be 1.6:1.0. From galvanostatic charge discharge studies, a specific discharge capacity of 139 mu Ah mu m(-1) cm(-2) was obtained when cycled between 2.00 and 3.50 V vs Li/Li+. Additionally the rate capability of the thin film electrodes was studied by subjecting the cells to charge-discharge cycling at different current densities in the range from 10 mu A cm(-2) to 100 mu A cm(-2). (C) 2013 The Electrochemical Society. All rights reserved.
Resumo:
The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.
Resumo:
TIN thin films with (200) fibre texture are deposited on Cu substrate at room temperature using reactive magnetron sputtering. They exhibit a discharge capacity of 172 mu Ah cm(-2) mu m(-1) (300 mAh g(-1)) in a non-aqueous electrolyte containing a Li salt. There is a graded decrease in discharge capacity when cycled between 0.01 and 3.0 V. Electron microscopy investigations indicate significant changes in surface morphology of the cycled TiN electrodes in comparison with the as deposited TiN films. From XPS depth profile analysis, it is inferred that Li intercalated TIN films consist of lithium compounds, hydroxyl groups, titanium sub oxides and TiN. Lithium diffusivity and reactivity decrease with increase in depth and the major reaction with lithium takes place at film surface and grain boundaries. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report here the growth of epitaxial Co metal thin film on c-plane sapphire by pulsed laser deposition (RD) using Co:ZnO target utilizing the composition inhomogeneity of the corresponding plasma. Two distinct plasma composition regions have been observed using heavily alloyed Co0.6Zn0.4O target. The central and intense region of the plasma grows Co:ZnO film; the extreme tail grows only Co metal with no trace of either ZnO or Co oxide In between the two extremes, mixed phases (Co +Co-oxides +Co:ZnO) were observed. The Co metal thin film grown in this way shows room temperature ferromagnetism with large in plane magnetization similar to 1288 emu cm(-3) and a coerciviLy of similar to 230 Oe with applied field parallel to the film-substrate interface. Carrier density of the film is similar to 10(22) cm(-3). The film is epiLaxial single phase Co metal which is confirmed by both X-ray diffraction and transmission electron microscopy characierizaLions. Planar Hall Effect (PHE) and Magneto Optic Kerr Effect (MOKE) measurements confirm that the film possesses similar attributes of Co metal. The result shows that the epiLaxial Co metal thin film can be grown from its oxides in the PLD. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Non-crystalline semiconductor based thin film transistors are the building blocks of large area electronic systems. These devices experience a threshold voltage shift with time due to prolonged gate bias stress. In this paper we integrate a recursive model for threshold voltage shift with the open source BSIM4V4 model of AIM-Spice. This creates a tool for circuit simulation for TFTs. We demonstrate the integrity of the model using several test cases including display driver circuits.
Resumo:
Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.