923 resultados para Teorema de pitágoras e história da Matemática


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajando con números (potencias y raíces en la calculadora, números primos, multiplicando y dividiendo números negativos), álgebra, diagramas estadísticos (dibujando e interpretando gráficos), ecuaciones (fracciones en ecuaciones), ratio y proporción, cálculos estadísticos, el teorema de Pitágoras, fórmulas, medidas, secuencias, muestreos, trigonometría, representando e interpretando datos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: integrales, algebra, decimales, fórmulas, ecuaciones, coordenadas, cálculos estadísticos, secuencias, medidas, usando una calculadora, diagramas estadísticos, potencias y raíces, ratio y proporción, teorema de Pitágoras, trabajando con números, ángulos, triángulos y cuadriláteros, fracciones, círculos y polígonos, índices y potencias, gráficos, porcentajes, rotación, perímetro, área y volumen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (KS3) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajando con números, probabilidad, multiplicación y división de fracciones, fracciones y porcentajes, ratio, polígonos, áreas de triángulos, gráficos, circunferencia y área de un círculo, fórmulas, reflexiones, traducciones y rotaciones (rotación de un objeto sobre un punto), ecuaciones, gráficos de línea recta, gráficos curvados, datos continuos, teorema de Pitágoras, volúmenes, relaciones entre distancia, velocidad y tiempo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (AQA) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: números (fracciones, decimales, porcentajes, ratio y proporción), estadísticas (reuniendo y representando datos, medidas estadísticas, probabilidad), álgebra (secuencias y símbolos, ecuaciones y fórmulas, coordenadas y gráficos, funciones al cuadrado), geometría y medidas (área y volumen, ángulos y polígonos, transformaciones y vectores, el teorema de Pitágoras, trigonometría).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (AQA) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: fracciones y decimales, ángulos y áreas, trabajando con símbolos, porcentajes y ratios, ecuaciones y fórmulas, propiedades de los polígonos, gráficos, el teorema de Pitágoras, propiedades de los círculos, medidas, trigonometría, vectores, ecuaciones simultáneas, funciones exponenciales. Las respuestas a los ejercicios se encuentran al final del libro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Análisis en tono a la potenciación y la radicación, cuestiones que atañen a la enseñanza de las matemáticas. Para lograr un armonioso desarrollo de las facultades de los estudiantes, hacer apta su inteligencia para captar con rapidez la verdad, enriquecer su memoria con útiles conocimientos y experiencias y despertar el espíritu de observación y exactitud, en definitiva, desarrollar la capacidad de razonar, hay que dotar a los alumnos de una adecuada gimnasia mental y a expresarse siempre con precisión. A este respecto las cuestiones que se desarrollan, es decir, la potenciación y la radicación, constituyen valiosos elementos de mejora de las capacidades intelectuales de los alumnos. Corresponden con las lecciones 10, 11, 12 y 13 del programa oficial de las Matemáticas de Segundo Curso de Bachillerato. Se propone que en una primera sesión se desarrolle el tema de la potenciación con números naturales y operaciones con potencias. Más adelante se estudiarán las propiedades de la potenciación, su aplicación al cálculo rápido, y se desarrollará la cuestión del producto y el cociente de potencias con la misma base. También se tocará el teorema de Pitágoras. Por otro lado se hace referencia al desarrollo de las clases con raíces cuadradas, la definición de la radicación, su nomenclatura y notación, la interpretación geométrica de los restos de la raíz, la práctica de la raíz cuadrada y la prueba de la raíz. Se considera que terminada la segunda lección, referente a la raíz cuadrada, será fácil percatarse de que no es fácil para todos los alumnos. Habrá que seguir esforzándose por perfeccionar métodos, realizar repeticiones colectivas e individuales y ejercicios prácticos debidamente graduados y dosificados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se comentan una serie de fotografías con el fin de explicar los materiales que en ellas aparecen, así como: la proporcionalidad de segmentos utilizando regletas, una corona circular con guía y regletas para mostrar la variación de las funciones geométricas, la construcción de un tetraedro con varillas de madera, modelo para explicar el Teorema de Pitágoras por equivalencia de áreas, un geoplano, el cálculo de volúmenes, y un compás de elipses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presentan algunos ejercicios prácticos relacionados con el teorema de Pitágoras. Se emplean sencillos instrumentos de medida y por medio de una metodología activa, que integra la actividad manual con la intelectual, los alumnos comprueban las propiedades del teorema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La jornada escolar tiene un horario de nueve a doce horas por la mañana y de quince a diecisiete horas por la tarde. Por la mañana, tras la izada de la bandera y la oración, se dedican veinticinco minutos al cálculo mental y una hora al lenguaje y la lectura expresiva con ejercicios de ortografía, redacción, gramática y literatura. Tras el recreo, otra hora dedicada a la geometría, con la explicación del teorema de Pitágoras y sus aplicaciones prácticas. Por la tarde, un tiempo para completar trabajos o ejercicios pendientes y la última hora dividida en dos tiempos iguales para las clases de historia y dibujo. También, se redactan unas notas sobre las características de la escuela y de los alumnos que han servido de muestra para este trabajo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se describen algunas formas de aplicar los trabajos manuales a la enseñanza de las matemáticas. La cartulina y las tijeras tienen valor didáctico para que los niños aprendan las fracciones, las medidas de longitud y de superficie, el valor de los ángulos de un triángulo y el teorema de Pitágoras. Se dan indicaciones para la confección de poliedros regulares y otros sólidos geométricos, de mosaicos con motivos geométricos y de señales de circulación.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta innovación obtuvo Mención honorífica en los Premios Nacionales de Investigación e Innovación Educativas 1994

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elaborar una programación de matemáticas fundamentada en una determinada concepción 'constructivista' del aprendizaje, en la que se aborda el estudio del Teorema de Pitágoras (para séptimo y octavo de EGB o primer ciclo de la ESO). Explicitar y fundamentar exhaustivamente los principios de procedimiento asumidos para la elección, secuenciación y evaluación de las actividades recogidas en la unidad didáctica. Ensayar la programación de manera experimental en diferentes cursos, recurriendo a los geoplanos cuadrados como material manipulativo. Reelaborarla tras la primera experimentación. Presentar la programación de la unidad didáctica, fundamentada epistemológica, psicológica, sociológica y pedagógicamente. Hipótesis: La utilización de material manipulativo, como los geoplanos cuadrados, posibilita la concreción de una metodología constructivista del aprendizaje de la geometría en el ciclo 12-16. Alumnos del área de matemáticas de educación secundaria obligatoria. Se enmarca dentro de la investigación en la acción. El trabajo se ha desarrollado en torno a un seminario de discusión y a la puesta en práctica de las actividades. Se centra más en la fundamentación teórica de la unidad didáctica propuesta que en su aplicación. Seminario de discusión, actividades manipulativas con geoplanos. 1. El conjunto de actividades propuestas en torno al tema 'Teorema de Pitágoras' satisface los principios psico-pedagógicos de intervención que se deducen de una concepción constructivista del proceso de aprendizaje de los conocimientos científicos y que se explicitan como los más adecuados en las propuestas actuales de la Administración educativa, en concreto en el DCB. Asimismo, satisfacen los criterios recogidos en las orientaciones para la enseñanza y evaluación de dicho documento referidos al área de matemáticas en la ESO. 2. Se incluyen actividades previas con geoplanos para la ed. primaria y una explicación del material y de la concepción educativa de su creador, Caleb Gattegno. 3. A pesar de no haber desarrollado de forma sistemática la observación de la puesta en práctica de las actividades, se constata el alto grado de satisfacción y aprovechamiento que han mostrado todos los alumnos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study has as objective to explaining about the origins of the mathematical logic. This has its beginning attributed to the autodidactic English mathematician George Boole (1815-1864), especially because his books The Mathematical Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854) are recognized as the inaugural works of the referred branch. However, surprisingly, in the same time another mathematician called Augutus of Morgan (1806-1871) it also published a book, entitled Formal Logic (1847), in defense of the mathematic logic. Even so, times later on this same century, another work named Elements of Logic (1875) it appeared evidencing the Aristotelian logic with Richard Whately (1787-1863), considered the better Aristotelian logical of that time. This way, our research, permeated by the history of the mathematics, it intends to study the logic produced by these submerged personages in the golden age of the mathematics (19th century) to we compare the valid systems in referred period and we clarify the origins of the mathematical logic. For that we looked for to delineate the panorama historical wrapper of this study. We described, shortly, biographical considerations about these three representatives of the logic of the 19th century formed an alliance with the exhibition of their point of view as for the logic to the light of the works mentioned above. In this sense, we aspirated to present considerations about what effective Aristotelian´s logic existed in the period of Boole and De Morgan comparing it with the new emerging logic (the mathematical logic). Besides of this, before the textual analysis of the works mentioned above, we still looked for to confront the systems of Boole and De Morgan for we arrive to the reason because the Boole´s system was considered better and more efficient. Separate of this preponderance we longed to study the flaws verified in the logical system of Boole front to their contemporaries' production, verifying, for example, if they repeated or not. We concluded that the origins of the mathematical logic is in the works of logic of George Boole, because, in them, has the presentation of a new logic, matematizada for the laws of the thought similar to the one of the arithmetic, while De Morgan, in your work, expand the Aristotelian logic, but it was still arrested to her

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to analyze the historical and epistemological development of the Group concept related to the theory on advanced mathematical thinking proposed by Dreyfus (1991). Thus it presents pedagogical resources that enable learning and teaching of algebraic structures as well as propose greater meaning of this concept in mathematical graduation programs. This study also proposes an answer to the following question: in what way a teaching approach that is centered in the Theory of Numbers and Theory of Equations is a model for the teaching of the concept of Group? To answer this question a historical reconstruction of the development of this concept is done on relating Lagrange to Cayley. This is done considering Foucault s (2007) knowledge archeology proposal theoretically reinforced by Dreyfus (1991). An exploratory research was performed in Mathematic graduation courses in Universidade Federal do Pará (UFPA) and Universidade Federal do Rio Grande do Norte (UFRN). The research aimed to evaluate the formation of concept images of the students in two algebra courses based on a traditional teaching model. Another experience was realized in algebra at UFPA and it involved historical components (MENDES, 2001a; 2001b; 2006b), the development of multiple representations (DREYFUS, 1991) as well as the formation of concept images (VINNER, 1991). The efficiency of this approach related to the extent of learning was evaluated, aiming to acknowledge the conceptual image established in student s minds. At the end, a classification based on Dreyfus (1991) was done relating the historical periods of the historical and epistemological development of group concepts in the process of representation, generalization, synthesis, and abstraction, proposed here for the teaching of algebra in Mathematics graduation course

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is an analysis of Adrien-Marie Legendre s works on Number Theory, with a certain emphasis on his 1830 edition of Theory of Numbers. The role played by these works in their historical context and their influence on the development of Number Theory was investigated. A biographic study of Legendre (1752-1833) was undertaken, in which both his personal relations and his scientific productions were related to certain historical elements of the development of both his homeland, France, and the sciences in general, during the 18th and 19th centuries This study revealed notable characteristics of his personality, as well as his attitudes toward his mathematical contemporaries, especially with regard to his seemingly incessant quarrels with Gauss about the priority of various of their scientific discoveries. This is followed by a systematic study of Lagrange s work on Number Theory, including a comparative reading of certain topics, especially that of his renowned law of quadratic reciprocity, with texts of some of his contemporaries. In this way, the dynamics of the evolution of his thought in relation to his semantics, the organization of his demonstrations and his number theoretical discoveries was delimited. Finally, the impact of Legendre s work on Number Theory on the French mathematical community of the time was investigated. This investigation revealed that he not only made substantial contributions to this branch of Mathematics, but also inspired other mathematicians to advance this science even further. This indeed is a fitting legacy for his Theory of Numbers, the first modern text on Higher Arithmetic, on which he labored half his life, producing various editions. Nevertheless, Legendre also received many posthumous honors, including having his name perpetuated on the Trocadéro face of the Eiffel Tower, which contains a list of 72 eminent scientists, and having a street and an alley in Paris named after him