952 resultados para Temporal and Spatial Variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significance and cause of the decline in biomass burning across the Americas after AD 1500 is a topic of considerable debate. We synthesized charcoal records (a proxy for biomass burning) from the Americas and from the remainder of the globe over the past 2000 years, and compared these with paleoclimatic records and population reconstructions. A distinct post-AD 1500 decrease in biomass burning is evident, not only in the Americas, but also globally, and both are similar in duration and timing to ‘Little Ice Age’ climate change. There is temporal and spatial variability in the expression of the biomass-burning decline across the Americas but, at a regional–continental scale, ‘Little Ice Age’ climate change was likely more important than indigenous population collapse in driving this decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o objetivo de verificar a variabilidade temporal e espacial do tamanho de amostra da radiação solar global média decendial, de 22 locais do Estado do Rio Grande do Sul, utilizaram-se séries de dados de radiação solar global do período de 1956 a 2003. Determinou-se o tamanho de amostra da radiação solar global média decendial em cada decêndio e local e agruparam-se os decêndios e os locais pelo método hierárquico 'vizinho mais distante'. Há variabilidade do tamanho de amostra (número de anos) para a estimativa da radiação solar global média decendial no Estado do Rio Grande do Sul no tempo e no espaço. Maior tamanho é necessário nos decêndios dos meses de junho, julho, agosto e setembro em relação aos outros meses. Para os locais e decêndios estudados, 30 anos de observações são suficientes para estimar a média (µ) de radiação solar global média decendial, para um erro de estimação igual a 12.3%, com coeficiente de confiança de 95%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convective storm rainfall is of special importance to urban hydrological studies due to its temporal and spatial variability. Although dense networks of recording rain gauges can be employed to characterize such rainfall, very few investigations of this type have been undertaken due to their prohibitive cost. This paper reports some data on characteristics of tropical convective storms obtained from radar at Bauru in the State of São Paulo, Brazil. Periods of convective precipitation were identified by exclusion of those related to frontal activity with the help of synoptic maps and the radar screen record. The occurrence and evolution of convective storms were observed in two 28 km × 28 km windows obtaining information on the life history of convective cells and the magnitude of rainfall. Frequency distributions of the time of occurrence of convective rainfall, cell size, area covered, life duration and maximum and average rainfall observed in the experimental areas are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Aquicultura - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se presentan algunos resultados obtenidos del análisis de la variabilidad de la altura de la superficie del mar a partir de las anomalías del nivel del mar proporcionadas por los datos del altímetro a bordo del satélite ERS-2. La finalidad del estudio has sido la determinación de la variación estacional que las estructuras oceanográficas mesoescalares presentan en las proximidades del archipiélago canario durante el año 1998. En esta zona, caracterizada por la generación de remolinos ciclónicos y anticiclónicos al sur de las islas debida a la perturbación que experimenta la corriente de Canarias a su paso por los canales entre las islas, y por los filamentos de agua fría procedente del afloramiento, el altímetro se muestra como una herramienta importante en la detección y posterior análisis de estas estructuras oceanográficas. Los resultados muestran que la variabilidad espacial y temporal del nivel del mar es máxima en el segundo semestre del año, y ésta se centra, fundamentalmente, en una estrecha banda situada al sudoeste del archipiélago. ABSTRACT: Some results obtained from the analysis of the sea surface height variability using sea level anomalies given by ERS-2 altimeter data are shown in this work. The aim of the study is to work out the seasonal variations of the mesoscale oceanographic features that appear in the vicinity of the Canary Archipelago during 1998 year. This area is characterized by cyclonic and anticyclonic eddies southward of the islands, which are generated by the interference suffered by the Canary Current through the canals between the islands, and also owing to cold water filaments coming from the Upwelling. The altimeter demonstrates to be an important tool in the detection and posterior analysis of these features. The results show that the temporal and spatial variability of the sea level is associated, fundamentally, to a narrow band located to the southwest of the archipelago, and which has been clearly seen with greater intensity during the periods of summer and autumn of 1998.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales. Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal snow cover is of great environmental and socio-economic importance for the European Alps. Therefore a high priority has been assigned to quantifying its temporal and spatial variability. Complementary to land-based monitoring networks, optical satellite observations can be used to derive spatially comprehensive information on snow cover extent. For understanding long-term changes in alpine snow cover extent, the data acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensors mounted onboard the National Oceanic and Atmospheric Association (NOAA) and Meteorological Operational satellite (MetOp) platforms offer a unique source of information. In this paper, we present the first space-borne 1 km snow extent climatology for the Alpine region derived from AVHRR data over the period 1985–2011. The objective of this study is twofold: first, to generate a new set of cloud-free satellite snow products using a specific cloud gap-filling technique and second, to examine the spatiotemporal distribution of snow cover in the European Alps over the last 27 yr from the satellite perspective. For this purpose, snow parameters such as snow onset day, snow cover duration (SCD), melt-out date and the snow cover area percentage (SCA) were employed to analyze spatiotemporal variability of snow cover over the course of three decades. On the regional scale, significant trends were found toward a shorter SCD at lower elevations in the south-east and south-west. However, our results do not show any significant trends in the monthly mean SCA over the last 27 yr. This is in agreement with other research findings and may indicate a deceleration of the decreasing snow trend in the Alpine region. Furthermore, such data may provide spatially and temporally homogeneous snow information for comprehensive use in related research fields (i.e., hydrologic and economic applications) or can serve as a reference for climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a characterization of the surface wind climatology over the Iberian Peninsula (IP). For this objective, an unprecedented observational database has been developed. The database covers a period of 6years (2002–2007) and consists of hourly wind speed and wind direction data recorded at 514 automatic weather stations. Theoriginal observations underwent a quality control process to remove rough errors from the data set. In the first step, the annual and seasonal mean behaviour of the wind field are presented. This analysis shows the high spatial variability of the wind as a result of its interaction with the main orographic features of the IP. In order to simplify the characterization of the wind, a clustering procedure was applied to group the observational sites with similar temporal wind variability. A total of 20 regions are identified. These regions are strongly related to the main landforms of the IP. The wind behaviour of each region, characterized by the wind rose (WR), annual cycle (AC) and wind speed histogram, is explained as the response of each region to the main circulation types (CTs) affecting the IP. Results indicate that the seasonal variability of the synoptic scale is related with intra-annual variability and modulated by local features in the WRs variability. The wind speed distribution not always fit to a unimodal Weibull distribution consequence of interactions at different atmospheric scales. This work contributes to a deeper understanding of the temporal and spatial variability of surface winds. Taken together, the wind database created, the methodology used and the conclusion extracted are a benchmark for future works based on the wind behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seamounts are of great interest to science, industry and conservation because of their potential role as 'stirring rods' of the oceans, their enhanced productivity, their high local biodiversity, and the growing exploitation of their natural resources. This is accompanied by rising concern about the threats to seamount ecosystems, e.g. through over-fishing and the impact of trawling. OASIS described the functioning characteristics of seamount ecosystems. OASIS' integrated hydrographic, biogeochemical and biological information. Based on two case studies. The scientific results, condensed in conceptual and mass balanced ecosystem models, were applied to outline a model management plan as well as site-specific management plans for the seamounts investigated. OASIS addressed five main objectives: Objective 1: To identify and describe the physical forcing mechanisms effecting seamount systems Objective 2: To assess the origin, quality and dynamics of particulate organic material within the water column and surface sediment at seamounts. Objective 3: To describe aspects of the biodiversity and the ecology of seamount biota, to assess their dynamics and the maintenance of their production. Objective 4: Modelling the trophic ecology of seamount ecosystems. Objective 5: Application of scientific knowledge to practical conservation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: