204 resultados para TRANSITING EXOPLANETS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SuperWASP cameras are wide-field imaging systems at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some 482 deg2 with an angular scale of 13.7" pixel-1, and is capable of delivering photometry with accuracy better than 1% for objects having V~7.0-11.5. Lower quality data for objects brighter than V~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100 Gbytes per night. We have produced a robust, largely automatic reduction pipeline and advanced archive, which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exoplanet systems suitable for spectroscopic follow-up observations. The first 6 month season of SuperWASP-North observations produced light curves of ~6.7 million objects with 12.9 billion data points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have performed photometric observations of nearly seven million stars with 8 <V <15 with the SuperWASP-North instrument from La Palma between 2004 May to September. Fields in the right ascension range 17-18h, yielding over 185000 stars with sufficient quality data, have been searched for transits using a modified box least-squares (BLS) algorithm. We find a total of 58 initial transiting candidates which have high signal-to-noise ratio in the BLS, show multiple transit-like dips and have passed visual inspection. Analysis of the blending and the inferred planetary radii for these candidates leave, a total of seven transiting planet candidates which pass all the tests plus four which pass the majority. We discuss the derived parameters for these candidates and their properties and comment on the implications for future transit searches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TheWide Angle Search for Planets (WASP) survey currently operates two installations, designated SuperWASP-N and SuperWASP-S, located in the Northern and Southern hemispheres, respectively. These installations are designed to provide high time-resolution photometry for the purpose of detecting transiting extrasolar planets, asteroids, and transient events. Here, we present results from a transit-hunting observing campaign using SuperWASP-N covering a right ascension (RA) range of 06h < RA < 16h. This paper represents the fifth and final in the series of transit candidates released from the 2004 observing season. In total, 729 335 stars from 33 fields were monitored with 130 566 having sufficient precision to be scanned for transit signatures. Using a robust transit detection algorithm and selection criteria, six stars were found to have events consistent with the signature of a transiting extrasolar planet based on the photometry, including the known transiting planet XO-1b. These transit candidates are presented here along with discussion of follow-up observations and the expected number of candidates in relation to the overall observing strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses, but 1.5-2 Jupiter radii, giving a density of 6%-14% that of Jupiter. WASP-17b is in a 3.7 day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (? ˜ -150°), indicative of a violent history involving planet-planet or star-planet scattering. WASP-17b's bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularization of an eccentric orbit, such as the highly eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planet's radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17b's atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75+0.22-0.21°, the planet-star radius ratio to be Rp/R* = 0.1098+0.0010-0.0012 and the stellar radius to be R* = 0.834+0.018-0.026Rsolar, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 2454856.70118 +/- 0.00018 HJD and P = 2.899738 +/- 0.000007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M? in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a transit timing study of the transiting exoplanetary system HD 189733. In total, we observed 10 transits in 2006 and 2008 with the 2.6-m Nordic Optical Telescope, and two transits in 2007 with the 4.2-m William Herschel Telescope. We used Markov Chain Monte Carlo simulations to derive the system parameters and their uncertainties, and our results are in a good agreement with previously published values. We performed two independent analyses of transit timing residuals to place upper mass limits on putative perturbing planets. The results show no evidence for the presence of planets down to 1 Earth mass near the 1:2 and 2:1 resonance orbits, and planets down to 2.2 Earth masses near the 3:5 and 5:3 resonance orbits with HD 189733b. These are the strongest limits to date on the presence of other planets in this system. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. ‡

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The spectra cover three distinct wavelength ranges: NUVA (2539-2580 Å), NUVB (2655-2696 Å), and NUVC (2770-2811 Å). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5s level. We detect extra absorption in the Mg II ??2800 resonance line cores at the 2.8s level. The NUVA, NUVB, and NUVC light curves imply effective radii of 2.69 ± 0.24 R J , 2.18 ± 0.18 R J , and 2.66 ± 0.22 R J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin, and manganese, and at singly ionized ytterbium, scandium, manganese, aluminum, vanadium, and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibit an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. The host star, WASP-26, has a mass of 1.12 ± 0.03 M? and a radius of 1.34 ± 0.06 R? and is in a visual double with a fainter K-type star. The two stars are at least a common-proper motion pair with a common distance of around 250 ± 15 pc and an age of 6 ± 2 Gy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus-Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) ± 0.000005 and mass ratio, q ~ 0.8. Here, we present the analysis of the discovery data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Hot-Jupiter planets must form at large separations from their host stars where the temperatures are cool enough for their cores to condense. They then migrate inwards to their current observed orbital separations. Different theories of how this migration occurs lead to varying distributions of orbital eccentricity and the alignment between the rotation axis of the star and the orbital axis of the planet. Aims: The spin-orbit alignment of a transiting system is revealed via the Rossiter-McLaughlin effect, which is the anomaly present in the radial velocity measurements of the rotating star during transit due to the planet blocking some of the starlight. In this paper we aim to measure the spin-orbit alignment of the WASP-3 system via a new way of analysing the Rossiter-McLaughlin observations. Methods: We apply a new tomographic method for analysing the time variable asymmetry of stellar line profiles caused by the Rossiter-McLaughlin effect. This new method eliminates the systematic error inherent in previous methods used to analyse the effect. Results: We find a value for the projected stellar spin rate of v sin i = 13.9 ± 0.03 km s-1 which is in agreement with previous measurements but has a much higher precision. The system is found to be well aligned, with ? = 5-5+6° which favours an evolutionary history for WASP-3b involving migration through tidal interactions with a protoplanetary disc. From comparison with isochrones we put an upper limit on the age of the star of 2 Gyr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O>=1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T>2,500K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.