931 resultados para TIME-MOTION
Resumo:
This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
Flexible objects such as a rope or snake move in a way such that their axial length remains almost constant. To simulate the motion of such an object, one strategy is to discretize the object into large number of small rigid links connected by joints. However, the resulting discretised system is highly redundant and the joint rotations for a desired Cartesian motion of any point on the object cannot be solved uniquely. In this paper, we revisit an algorithm, based on the classical tractrix curve, to resolve the redundancy in such hyper-redundant systems. For a desired motion of the `head' of a link, the `tail' is moved along a tractrix, and recursively all links of the discretised objects are moved along different tractrix curves. The algorithm is illustrated by simulations of a moving snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator. The simulations show that the tractrix based algorithm leads to a more `natural' motion since the motion is distributed uniformly along the entire object with the displacements diminishing from the `head' to the `tail'.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
H-1 and F-19 spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10-400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.
Resumo:
The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.
Resumo:
Strong motion array records are analyzed in this paper to identify and map the source zone of four past earthquakes. The source is represented as a sequence of double couples evolving as ramp functions, triggering at different instants, distributed in a region yet to be mapped. The known surface level ground motion time histories are treated as responses to the unknown double couples on the fault surface. The location, orientation, magnitude, and risetime of the double couples are found by minimizing the mean square error between analytical solution and instrumental data. Numerical results are presented for Chi-Chi, Imperial Valley, San Fernando, and Uttarakashi earthquakes. Results obtained are in good agreement with field investigations and those obtained from conventional finite fault source inversions.
Resumo:
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.
Resumo:
The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.
Resumo:
First, the non-linear response of a gyrostabilized platform to a small constant input torque is analyzed in respect to the effect of the time delay (inherent or deliberately introduced) in the correction torque supplied by the servomotor, which itself may be non-linear to a certain extent. The equation of motion of the platform system is a third order nonlinear non-homogeneous differential equation. An approximate analytical method of solution of this equation is utilized. The value of the delay at which the platform response becomes unstable has been calculated by using this approximate analytical method. The procedure is illustrated by means of a numerical example. Second, the non-linear response of the platform to a random input has been obtained. The effects of several types of non-linearity on reducing the level of the mean square response have been investigated, by applying the technique of equivalent linearization and solving the resulting integral equations by using laguerre or Gaussian integration techniques. The mean square responses to white noise and band limited white noise, for various values of the non-linear parameter and for different types of non-linearity function, have been obtained. For positive values of the non-linear parameter the levels of the non-linear mean square responses to both white noise and band-limited white noise are low as compared to the linear mean square response. For negative values of the non-linear parameter the level of the non-linear mean square response at first increases slowly with increasing values of the non-linear parameter and then suddenly jumps to a high level, at a certain value of the non-linearity parameter.
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.
Resumo:
The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.
Resumo:
Sampling based planners have been successful in path planning of robots with many degrees of freedom, but still remains ineffective when the configuration space has a narrow passage. We present a new technique based on a random walk strategy to generate samples in narrow regions quickly, thus improving efficiency of Probabilistic Roadmap Planners. The algorithm substantially reduces instances of collision checking and thereby decreases computational time. The method is powerful even for cases where the structure of the narrow passage is not known, thus giving significant improvement over other known methods.
Resumo:
The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.