950 resultados para THRESHOLD CONTACT PROCESS
Resumo:
Policy initiatives in inter-group education evolved in Northern Ireland and Israel at around the same
time. In each jurisdiction, the emphasis is on improving relations between protagonist groups in
ethnically divided societies. Central to this objective and at the core of integrated education
(Northern Ireland) and bilingual/bi-national education (Israel) is sustained contact in a shared
learning environment. Based on qualitative research in four schools, this paper examines the nature
of the contact experience in two integrated schools in Northern Ireland and two bilingual/binational
schools in Israel. Through comparative analysis, and with reference to contact theory, it
illuminates some of the contextual and process variables that seemingly mediate the quality and
moderate the effectiveness of contact in each school setting.
Resumo:
The present paper describes the results of an investigation into the modelling of plug assisted thermoforming. The objective of this work was to improve the finite element modelling of thermoforming through an enhanced understanding of the physical elements underlying the process. Experiments were carried out to measure the effects on output of changes in major parameters and simultaneously simple finite element models were constructed. The experimental results show that the process creates conflicting and interrelated contact friction and heat transfer effects that largely dictate the final wall thickness distribution. From the simulation work it was demonstrated that a high coefficient of friction and no heat transfer can give a good approximation of the actual wall thickness distribution. However, when conduction was added to the model the results for lower friction values were greatly improved. It was concluded that further work is necessary to provide realistic measurements and models for contact effects in thermoforming.
Resumo:
The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.
Resumo:
Although intergroup contact is one of the most prominent interventions to reduce prejudice. the generalization of contact effects is still a contentious issue This research further examined the rarely studied secondary transfer effect (STE, Pettigrew, 2009) by which contact with a primary outgroup reduces prejudice toward secondary groups that are not directly involved in the contact Across 3 cross-sectional studies conducted in Cyprus (N = 1.653), Northern Ireland (N = 1,973). and Texas (N = 275) and 1 longitudinal study conducted in Northern Ireland (N = 411). the present research sought to systematically rule out alternative accounts of the STE and to investigate 2 potential mediating mechanisms (ingroup reappraisal and attitude generalization) Results indicated that, consistent with the STE. contact with a primary outgroup predicts attitudes toward secondary outgroups. over and above contact with the secondary outgroup, socially desirable responding. and prior attitudes Mediation analyses found strong evidence for attitude generalization but only limited evidence for ingroup reappraisal as an underlying process Two out of 3 tests of a reverse model, where contact with the secondary outgroup predicts attitudes toward the primary outgroup. provide further evidence for an indirect effect through attitude generalization Theoretical and practical implications of these results are discussed, and directions for future research are identified
Resumo:
Introduction
Much has been written about the impact of conflict on the physical nature of cities; most obviously perhaps the damage, destruction, defensive construction and spatial reconfigurations that evolve in times of conflict. Set within the context of Belfast, Northern Ireland, this paper will focus on three areas. First, a closer reading of the long-term physical impact of conflict, in particular, the spatial forms and practices that persist conceptually and culturally, and/or resist re-conceptualisation. Secondly, the effect of conflict on the nature of architectural practice itself, considering whether issues such as appointment and procurement impacted on architectural expectation and the context of operation. Thirdly, the effect of conflict on people, in particular in relation to creativity and hence the psyche of practice itself. This section will also identify the conditions that undermine or support design quality and creativity not only within times of conflict but also as society evolves out of the shadow space. 1
Twelve years on from the Peace Agreement,2 it may seem remarkable from an external perspective that Northern Ireland still needs to be reflecting on its troubled past. But the immediate post-conflict phase offered the communities of Northern Ireland place and time to experience ‘normal life’, begin to reconcile themselves to the hurt they experienced and start to reconfigure their relationships to one another. Indeed, it has often been expressed that probing the issues too much, at too early a phase, might in fact ‘Open old wounds without resolving anything’ and/or ‘Destabilise the already fragile political system.’3 This tendency not to deliberate or be too probing is therefore understandable and might be the reason why, for example, Northern Ireland's first Architecture and Built Environment policy, published in June, 2006, contains only one routine reference to ‘the Troubles’.
Clearly, however, there is a time in the development of a healthy, functioning society, when in order effectively to plan its future, it must also carry out a closer reading and deeper understanding of its past. As Maya Angelou puts it, ‘History, despite its wrenching pain/ Cannot be unlived, and if faced/ With courage, need not be lived again.’4
Increasingly, those within the creative arts sector and the built environment professions are showing interest in carrying out that closer reading, teasing out issues around conflict. This was led in part by the recent publication of the Troubles Archive by the Arts Council of Northern Ireland.5 Those involved in the academic or professional development of future generations of architects are also concerned about the relevance of a post-conflict condition. As a profession, if architects purport to be concerned with context, then the almost tangible socio-political circumstances and legacy of Northern Ireland does inevitably require direct eye contact. This paper therefore aims to bring the relationship between conflict and architectural practice in Northern Ireland into sharp focus, not to constrain or dull creative practice but to heighten its potential.
Resumo:
The work presented in this paper takes advantage of newly developed instrumentation suitable for in process monitoring of an industrial stretch blow molding machine. The instrumentation provides blowing pressure and stretch rod force histories along with the kinematics of polymer contact with the mould wall. A Design of Experiments pattern was used to qualitatively relate machine inputs with these process parameters and the thickness distribution of stretch blow molded PET (polyethylene terephtalate) bottles. Material slippage at the mold wall and thickness distribution is also discussed in relation to machine inputs. The key process indicators defined have great potential for use in a closed loop process control system and for validation of process simulations.
Resumo:
A criterion is derived for delamination onset in transversely isotropic laminated plates under small mass, high velocity impact. The resulting delamination threshold load is about 21% higher than the corresponding quasi-static threshold load. A closed form approximation for the peak impact load is then used to predict the delamination threshold velocity. The theory is validated for a range of test cases by comparison with 3D finite element simulation using LS-DYNA and a newly developed interface element to model delamination onset and growth. The predicted delamination threshold loads and velocities are in very good agreement with the finite element simulations. Good agreement is also shown in a comparison with published experimental results. In contrast to quasi-static impacts, delamination growth occurs under a rapidly decreasing load. Inclusion of finite thickness effects and a proper description of the contact stiffness are found to be vital for accurate prediction of the delamination threshold velocity
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ultrasonic consolidation process is a rapid manufacturing process used to join thin layers of metal at low temperatures and low energy consumption. In this work, finite element method has been used to simulate the ultrasonic consolidation of Aluminium alloys 6061 (AA-6061) and 3003 (AA-3003). A thermomechanical material model has been developed in the framework of continuum cyclic plasticity theory which takes into account both volume (acoustic softening) and surface (thermal softening due to friction) effects. A friction model based on experimental studies has been developed, which takes into account the dependence of coefficient of friction upon contact pressure, amount of slip, temperature and number of cycles. Using the developed material and friction model ultrasonic consolidation (UC) process has been simulated for various combinations of process parameters involved. Experimental observations are explained on the basis of the results obtained in the present study. The current research provides the opportunity to explain the differences of the behaviour of AA-6061 and AA-3003 during the ultrasonic consolidation process. Finally, trends of the experimentally measured fracture energies of the bonded specimen are compared to the predicted friction work at the weld interface resulted from the simulation at similar process condition. Similarity of the trends indicates the validity of the developed model in its predictive capability of the process. © 2008 Materials Research Society.
Resumo:
The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a "typical" concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.
Resumo:
In this paper, we present a novel discrete cosine transform (DCT) architecture that allows aggressive voltage scaling for low-power dissipation, even under process parameter variations with minimal overhead as opposed to existing techniques. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors appear only from the long paths that are designed to be less contributive to output quality. The proposed architecture allows a graceful degradation in the peak SNR (PSNR) under aggressive voltage scaling as well as extreme process variations. Results show that even under large process variations (±3σ around mean threshold voltage) and aggressive supply voltage scaling (at 0.88 V, while the nominal voltage is 1.2 V for a 90-nm technology), there is a gradual degradation of image quality with considerable power savings (71% at PSNR of 23.4 dB) for the proposed architecture, when compared to existing implementations in a 90-nm process technology. © 2006 IEEE.
Resumo:
In this paper we propose a design methodology for low-power high-performance, process-variation tolerant architecture for arithmetic units. The novelty of our approach lies in the fact that possible delay failures due to process variations and/or voltage scaling are predicted in advance and addressed by employing an elastic clocking technique. The prediction mechanism exploits the dependence of delay of arithmetic units upon input data patterns and identifies specific inputs that activate the critical path. Under iso-yield conditions, the proposed design operates at a lower scaled down Vdd without any performance degradation, while it ensures a superlative yield under a design style employing nominal supply and transistor threshold voltage. Simulation results show power savings of upto 29%, energy per computation savings of upto 25.5% and yield enhancement of upto 11.1% compared to the conventional adders and multipliers implemented in the 70nm BPTM technology. We incorporated the proposed modules in the execution unit of a five stage DLX pipeline to measure performance using SPEC2000 benchmarks [9]. Maximum area and throughput penalty obtained were 10% and 3% respectively.
Resumo:
As an emerging hole-machining methodology, helical milling process has become increasingly popular in aeromaterials manufacturing research, especially in areas of aircraft structural parts, dies, and molds manufacturing. Helical milling process is highly demanding due to its complex tool geometry and the progressive material failure on the workpiece. This paper outlines the development of a 3D finite element model for helical milling hole of titanium alloy Ti-6Al-4V using commercial FE code ABAQUS/Explicit. The proposed model simulates the helical milling hole process by taking into account the damage initiation and evolution in the workpiece material. A contact model at the interface between end-mill bit and workpiece has been established and the process parameters specified. Furthermore, a simulation procedure is proposed to simulate different cutting processes with the same failure parameters. With this finite element model, a series of FEAs for machined titanium alloy have been carried out and results compared with laboratory experimental data. The effects of machining parameters on helical milling have been elucidated, and the capability and advantage of FE simulation on helical milling process have been well presented.
Resumo:
The Intellectual Disability and Related Disabilities waiver has had many changes over the years and has evolved into a robust service package that can be a significant help to individuals who wish to remain in the community or at home but would otherwise require institutional level care. Due to the limited amount of funds, it was necessary to create a waiting list for individuals who wish to participate in the ID/RD Waiver program. This project was undertaken to assess if there were practical steps that could be taken to assist in reducing the time and cost involved in the ID/RD Waiver enrollment process.