920 resultados para Swear words
Resumo:
Il a été démontré que les mots sont plus faciles à reconnaître lorsque leur moitié inférieure est effacée, laissant leur moitié supérieure intacte, que lorsque leur moitié supérieure est effacée. Si la reconnaissance de lettres sous-tend la reconnaissance de mots tel qu'il est généralement pris pour acquis, alors un tel effet devrait aussi être présent au niveau des lettres, mais ce n'est pas le cas. Le but de ce mémoire a d'abord été d'investiguer cette différence entre lettres et mots et, ensuite, de démontrer que la préférence pour le haut des mots ne peut pas s'expliquer par les lettres. Finalement, nous nous questionnons sur l'existence d'un construit intermédiaire entre lettres et mots et proposons les chaînes lexicales.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Statistical Machine Translation (SMT) is one of the potential applications in the field of Natural Language Processing. The translation process in SMT is carried out by acquiring translation rules automatically from the parallel corpora. However, for many language pairs (e.g. Malayalam- English), they are available only in very limited quantities. Therefore, for these language pairs a huge portion of phrases encountered at run-time will be unknown. This paper focuses on methods for handling such out-of-vocabulary (OOV) words in Malayalam that cannot be translated to English using conventional phrase-based statistical machine translation systems. The OOV words in the source sentence are pre-processed to obtain the root word and its suffix. Different inflected forms of the OOV root are generated and a match is looked up for the word variants in the phrase translation table of the translation model. A Vocabulary filter is used to choose the best among the translations of these word variants by finding the unigram count. A match for the OOV suffix is also looked up in the phrase entries and the target translations are filtered out. Structuring of the filtered phrases is done and SMT translation model is extended by adding OOV with its new phrase translations. By the results of the manual evaluation done it is observed that amount of OOV words in the input has been reduced considerably
Resumo:
Resumen basado en la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Animation that rains down appropriate words relating to qualitative research
Resumo:
Resumen tomado de la revista
Resumo:
Resumen tomado de la publicación
Resumo:
Imágenes en miniatura ilustran las doce palabras que describen cada mes del año y van acompañadas de preguntas para animar a los niños a buscar y encontrar los distintos objetos que están en la otra página, ilustrada con las imágenes de los objetos antes mencionados. El nombre del mes aparece en la parte superior derecha de cada página seguido de una lista de objetos que no siempre tienen una conexión lógica con el mes.
Resumo:
Esta indicado para los niños que saben los sonidos y ya comienzan a desarrollar y mezclar palabras sencillas. Deben reconocer qué letra o letras coinciden con un sonido, así como con la mezcla y la segmentación. Los conocimientos y habilidades fónicos se pueden desarrollar con toda la clase, en grupos, o individualmente.
Resumo:
Actividades de entretenimiento para que los niños mejoren las habilidades en: lectura, escritura, dibujo, contar, jugar, lenguaje. Los símbolos que aparecen en cada página les sirven de guía visual para las actividades propuestas, que les ayudan a mejorar la comprensión verbal y escrita, la atención visual y la destreza con las manos.
Resumo:
Actividades de entretenimiento para que los niños mejoren las habilidades en: lectura, escritura, dibujo, contar, jugar, lenguaje. Los símbolos que aparecen en cada página les sirven de guía visual para las actividades propuestas, que les ayudan a mejorar la comprensión verbal y escrita, la atención visual y la destreza con las manos.