990 resultados para Surface normal
Resumo:
Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells.
Resumo:
OBJECTIVE Acetabular rim trimming is indicated in pincer hips with an oversized lunate surface but could result in a critically decreased size of the lunate surface in pincer hips with acetabular malorientation. There is a lack of detailed three-dimensional anatomy of lunate surface in pincer hips. Therefore, we questioned how does (1) size and (2) shape of the lunate surface differ among hips with different types of pincer impingement? METHOD We retrospectively compared size and shape of the lunate surface between acetabular retroversion (48 hips), deep acetabulum (34 hips), protrusio acetabuli (seven hips), normal acetabuli (30 hips), and hip dysplasia (45 hips). Using magnetic resonance imaging (MRI) arthrography with radial slices we measured size in percentage of the femoral head coverage and shape using the outer (inner) center-edge angles and width of lunate surface. RESULTS Hips with retroversion had a decreased size and deep hips had normal size of the lunate surface. Both had a normal shape of the outer acetabular rim. Protrusio hips had an increased size and a prominent outer acetabular rim. In all three types of pincer hips the acetabular fossa was increased. CONCLUSION Size and shape of the lunate surface differs substantially among different types of pincer impingement. In contrast to hips with protrusio acetabuli, retroverted and deep hips do not have an increased size of the lunate surface. Acetabular rim trimming in retroverted and deep hips should be performed with caution. Based on our results, acetabular reorientation would theoretically be the treatment of choice in retroverted hips.
Resumo:
The main purpose of this study was to evaluate the effect that mechanical stresses acting under the slipping driving wheels of agricultural equipment have on the soil’s pore system and water flow process (surface runoff generation during extreme event). The field experiment simulated low slip (1%) and high slip (27%) on a clay loam. The stress on the soil surface and changes in the amounts of water flowing from macropores were simulated using the Tires/tracks And Soil Compaction (TASC) tool and the MACRO model, respectively. Taking a 65 kW tractor on a clay loam as a reference, results showed that an increase in slip of the rear wheels from 1% to 27% caused normal stress to increase from 90.6 kPa to 104.4 kPa at the topsoil level, and the maximum shear contact stress to rise drastically from 6.0 kPa to 61.6 kPa. At 27% slip, topsoil was sheared and displaced over a distance of 0.35 m. Excessive normal and shear stress values with high slip caused severe reductions of the soil’s macroporosity, saturated hydraulic conductivity, and water quantities flowing from topsoil macropores. Assuming that, under conditions of intense rainfall on sloping land, a loss in vertical water flow would mean an increase in surface runoff, we calculated that a rainfall intensity of 100 mm h-1 and a rainfall duration of 1 h would increase the runoff coefficient to 0.79 at low slip and to 1.00 at high slip, indicating that 100% of rainwater would be transformed into surface runoff at high slip. We expect that these effects have a significant impact on soil erosion and floods in steeper terrain (slope > 15°) and across larger surface areas (> 16 m2) than those included in our study.
Resumo:
Normal human serum (NHS) confers human resistance to infection by the parasite Trypanosoma brucei owing to the trypanolytic activity of apolipoprotein L1 (APOL1), present in two serum complexes termed Trypanolytic Factors (TLF-1 and -2). In order to identify parasite components involved in the intracellular trafficking and activity of TLFs, an inducible RNA interference (RNAi) genomic DNA library constructed in bloodstream form T. brucei was subjected to RNAi induction and selection for resistant parasites under NHS conditions favouring either TLF-1 or TLF-2 uptake. While TLF-1 conditions readily selected the haptoglobin-haemoglobin (HP-HB) surface receptor TbHpHbR as expected, given its known ability to bind TLF-1, under TLF-2 conditions no specific receptor for TLF-2 was identified. Instead, the screen allowed the identification of five distinct factors expected to be involved in the assembly of the vacuolar proton pump V-ATPase and consecutive endosomal acidification. These data confirm that lowering the pH during endocytosis is required for APOL1 toxic activity.
Resumo:
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under "normal" or non-El Niño (1993-94) and El Niño conditions (1997-98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°-43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°-43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.
Resumo:
A database containing the global and diffuse components of the surface solar hourly irradiation measured from 1 January 2004 to 31 December 2010 at eight stations of the Egyptian Meteorological Authority is presented. For three of these sites (Cairo, Aswan, and El-Farafra), the direct component is also available. In addition, a series of meteorological variables including surface pressure, relative humidity, temperature, wind speed and direction is provided at the same hourly resolution at all stations. The details of the experimental sites and instruments used for the acquisition are given. Special attention is paid to the quality of the data and the procedure applied to flag suspicious or erroneous measurements is described in details. Between 88 and 99% of the daytime measurements are validated by this quality control. Except at Barrani where the number is lower (13500), between 20000 and 29000 measurements of global and diffuse hourly irradiation are available at all sites for the 7-year period. Similarly, from 9000 to 13000 measurements of direct hourly irradiation values are provided for the three sites where this component is measured. With its high temporal resolution this consistent irradiation and meteorological database constitutes a reliable source to estimate the potential of solar energy in Egypt. It is also adapted to the study of high-frequency atmospheric processes such as the impact of aerosols on atmospheric radiative transfer. In the next future, it is planned to complete regularly the present 2004-2010 database.
Resumo:
As part of the JGOFS field program, extensive CO2 partial-pressure measurements were made in the atmosphere and in the surface waters of the equatorial Pacific from 1992 to 1999. For the first time, we are able to determine how processes occurring in the western portion of the equatorial Pacific impact the sea-air fluxes of CO2 in the central and eastern regions. These 8 years of data are compared with the decade of the 1980s. Over this period, surface-water pCO2 data indicate significant seasonal and interannual variations. The largest decreases in fluxes were associated with the 1991-94 and 1997-98 El Niño events. The lower sea-air CO2 fluxes during these two El Niño periods were the result of the combined effects of interconnected large-scale and locally forced physical processes: (1) development of a low-salinity surface cap as part of the formation of the warm pool in the western and central equatorial Pacific, (2) deepening of the thermocline by propagating Kelvin waves in the eastern Pacific, and (3) the weakening of the winds in the eastern half of the basin. These processes serve to reduce pCO2 values in the central and eastern equatorial Pacific towards near-equilibrium values at the height of the warm phase of ENSO. In the western equatorial Pacific there is a small but significant increase in seawater pCO2 during strong El Niño events (i.e., 1982-83 and 1997-98) and little or no change during weak El Niño events (1991-94). The net effect of these interannual variations is a lower-than-normal CO2 flux to the atmosphere from the equatorial Pacific during El Niño. The annual average fluxes indicate that during strong El Niños the release to the atmosphere is 0.2-0.4 Pg C/yr compared to 0.8-1.0 Pg C/yr during non-El Niño years.
Resumo:
The aim of the present study was to evaluate the influence of different light quality, especially ultraviolet radiation (UVR), on the dynamics of volatile halogenated organic compounds (VHOCs) at the sea surface. Short term experiments were conducted with floating gas-tight mesocosms of different optical qualities. Six halocarbons (CH3I, CHCl3, CH2Br2, CH2ClI, CHBr3 and CH2I2), known to be produced by phytoplankton, together with a variety of biological and environmental variables were measured in the coastal southern Baltic Sea and in the Raunefjord (North Sea). These experiments showed that ambient levels of UVR have no significant influence on VHOC dynamics in the natural systems. We attribute it to the low radiation doses that phytoplankton cells receive in a normal turbulent surface mixed layer. The VHOC concentrations were influenced by their production and removal processes, but they were not correlated with biological or environmental parameters investigated. Diatoms were most likely the dominant biogenic source of VHOCs in the Baltic Sea experiment, whereas in the Raunefjord experiment macroalgae probably contributed strongly to the production of VHOCs. The variable stable carbon isotope signatures (d13C values) of bromoform (CHBr3) also indicate that different autotrophic organisms were responsible for CHBr3 production in the two coastal environments. In the Raunefjord, despite strong daily variations in CHBr3 concentration, the carbon isotopic ratio was fairly stable with a mean value of -26 per mil. During the declining spring phytoplankton bloom in the Baltic Sea, the d13C values of CHBr3 were enriched in 13C and showed noticeable diurnal changes (-12 per mil ± 4). These results show that isotope signature analysis is a useful tool to study both the origin and dynamics of VHOCs in natural systems.
Resumo:
KCNQ4 mutations underlie DFNA2, a subtype of autosomal dominant hearing loss. We had previously identified the pore-region p.G296S mutation that impaired channel activity in two manners: it greatly reduced surface expression and abolished channel function. Moreover, G296S mutant exerted a strong dominant-negative effect on potassium currents by reducing the channel expression at the cell surface representing the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. Here, we have investigated the pathogenic mechanism associated with all the described KCNQ4 mutations (F182L, W242X, E260K, D262V, L274H, W276S, L281S, G285C, G285S and G321S) that are located in different domains of the channel protein. F182L mutant showed a wild type-like cell-surface distribution in transiently transfected NIH3T3 fibroblasts and the recorded currents in Xenopus oocytes resembled those of the wild-type. The remaining KCNQ4 mutants abolished potassium currents, but displayed distinct levels of defective cell-surface expression in NIH3T3 as quantified by flow citometry. Co-localization studies revealed these mutants were retained in the ER, unless W242X, which showed a clear co-localization with Golgi apparatus. Interestingly, this mutation results in a truncated KCNQ4 protein at the S5 transmembrane domain, before the pore region, that escapes the protein quality control in the ER but does not reach the cell surface at normal levels. Currently we are investigating the trafficking behaviour and electrophysiological properties of several KCNQ4 truncated proteins artificially generated in order to identify specific motifs involved in channel retention/exportation. Altogether, our results indicate that a defect in KCNQ4 trafficking is the common mechanism underlying DFNA2
Resumo:
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface.
Resumo:
En este artículo se presentan los primeros resultados de absorción acústica a incidencia normal de espumas de aluminio fabricadas mediante una técnica pulvimetalúrgica. El interés de estas espumas radica en que en ellas se combinan interesantes propiedades acústicas y mecánicas. Se estudian espumas de aluminio de distinta morfología superficial conseguida variando el tipo de precursor y usando materiales de relleno durante el proceso de espumación. Se muestra un estudio comparativo de las espumas fabricadas mediante esta técnica con las espumas comerciales ALPORAS. Las espumas de menor densidad presentan una absorción acústica comparable a la de las comerciales ALPORAS. ABSTRACT. In this paper, the first experimental data of acoustic absorption at normal incidence in aluminum foams generated by a metallurgic technique are presented. The interest of this kind of structures is due to the combination of mechanical and acoustic properties. By changing the precursor type or using filling materials during the foaming process, we have obtained aluminum foams with different surface morphologies. A comparative study between foams fabricated using this technique and ALPORAS commercial aluminum foams is shown. The foams which present the lower density show an acoustic absorption comparable to the ALPORAS commercial ones.
Resumo:
Con esta tesis ”Desarrollo de una Teoría Uniforme de la Difracción para el Análisis de los Campos Electromagnéticos Dispersados y Superficiales sobre un Cilindro” hemos iniciado una nueva línea de investigación que trata de responder a la siguiente pregunta: ¿cuál es la impedancia de superficie que describe una estructura de conductor eléctrico perfecto (PEC) convexa recubierta por un material no conductor? Este tipo de estudios tienen interés hoy en día porque ayudan a predecir el campo electromagnético incidente, radiado o que se propaga sobre estructuras metálicas y localmente convexas que se encuentran recubiertas de algún material dieléctrico, o sobre estructuras metálicas con pérdidas, como por ejemplo se necesita en determinadas aplicaciones aeroespaciales, marítimas o automovilísticas. Además, desde un punto de vista teórico, la caracterización de la impedancia de superficie de una estructura PEC recubierta o no por un dieléctrico es una generalización de varias soluciones que tratan ambos tipos de problemas por separado. En esta tesis se desarrolla una teoría uniforme de la difracción (UTD) para analizar el problema canónico del campo electromagnético dispersado y superficial en un cilindro circular eléctricamente grande con una condición de contorno de impedancia (IBC) para frecuencias altas. Construir una solución basada en UTD para este problema canónico es crucial en el desarrollo de un método UTD para el caso más general de una superficie arbitrariamente convexa, mediante el uso del principio de localización de los campos electromagnéticos a altas frecuencias. Esta tesis doctoral se ha llevado a cabo a través de una serie de hitos que se enumeran a continuación, enfatizando las contribuciones a las que ha dado lugar. Inicialmente se realiza una revisión en profundidad del estado del arte de los métodos asintóticos con numerosas referencias. As í, cualquier lector novel puede llegar a conocer la historia de la óptica geométrica (GO) y la teoría geométrica de la difracción (GTD), que dieron lugar al desarrollo de la UTD. Después, se investiga ampliamente la UTD y los trabajos más importantes que pueden encontrarse en la literatura. As í, este capítulo, nos coloca en la posición de afirmar que, hasta donde nosotros conocemos, nadie ha intentado antes llevar a cabo una investigación rigurosa sobre la caracterización de la impedancia de superficie de una estructura PEC recubierta por un material dieléctrico, utilizando para ello la UTD. Primero, se desarrolla una UTD para el problema canónico de la dispersión electromagnética de un cilindro circular eléctricamente grande con una IBC uniforme, cuando es iluminado por una onda plana con incidencia oblicua a frecuencias altas. La solución a este problema canónico se construye a partir de una solución exacta mediante una expansión de autofunciones de propagación radial. Entonces, ésta se convierte en una nueva expansión de autofunciones de propagación circunferencial muy apropiada para cilindros grandes, a través de la transformación de Watson. De esta forma, la expresión del campo se reduce a una integral que se evalúa asintóticamente, para altas frecuencias, de manera uniforme. El resultado se expresa según el trazado de rayos descrito en la UTD. La solución es uniforme porque tiene la importante propiedad de mantenerse continua a lo largo de la región de transición, a ambos lados de la superficie del contorno de sombra. Fuera de la región de transición la solución se reduce al campo incidente y reflejado puramente ópticos en la región iluminada del cilindro, y al campo superficial difractado en la región de sombra. Debido a la IBC el campo dispersado contiene una componente contrapolar a causa de un acoplamiento entre las ondas TEz y TMz (donde z es el eje del cilindro). Esta componente contrapolar desaparece cuando la incidencia es normal al cilindro, y también en la región iluminada cuando la incidencia es oblicua donde el campo se reduce a la solución de GO. La solución UTD presenta una muy buena exactitud cuando se compara numéricamente con una solución de referencia exacta. A continuación, se desarrolla una IBC efectiva para el cálculo del campo electromagnético dispersado en un cilindro circular PEC recubierto por un dieléctrico e iluminado por una onda plana incidiendo oblicuamente. Para ello se derivan dos impedancias de superficie en relación directa con las ondas creeping y de superficie TM y TE que se excitan en un cilindro recubierto por un material no conductor. Las impedancias de superficie TM y TE están acopladas cuando la incidencia es oblicua, y dependen de la geometría del problema y de los números de onda. Además, se ha derivado una impedancia de superficie constante, aunque con diferente valor cuando el observador se encuentra en la zona iluminada o en la zona de sombra. Después, se presenta una solución UTD para el cálculo de la dispersión de una onda plana con incidencia oblicua sobre un cilindro eléctricamente grande y convexo, mediante la generalización del problema canónico correspondiente al cilindro circular. La solución asintótica es uniforme porque se mantiene continua a lo largo de la región de transición, en las inmediaciones del contorno de sombra, y se reduce a la solución de rayos ópticos en la zona iluminada y a la contribución de las ondas de superficie dentro de la zona de sombra, lejos de la región de transición. Cuando se usa cualquier material no conductor se excita una componente contrapolar que tiende a desaparecer cuando la incidencia es normal al cilindro y en la región iluminada. Se discuten ampliamente las limitaciones de las fórmulas para la impedancia de superficie efectiva, y se compara la solución UTD con otras soluciones de referencia, donde se observa una muy buena concordancia. Y en tercer lugar, se presenta una aproximación para una impedancia de superficie efectiva para el cálculo de los campos superficiales en un cilindro circular conductor recubierto por un dieléctrico. Se discuten las principales diferencias que existen entre un cilindro PEC recubierto por un dieléctrico desde un punto de vista riguroso y un cilindro con una IBC. Mientras para un cilindro de impedancia se considera una impedancia de superficie constante o uniforme, para un cilindro conductor recubierto por un dieléctrico se derivan dos impedancias de superficie. Estas impedancias de superficie están asociadas a los modos de ondas creeping TM y TE excitadas en un cilindro, y dependen de la posición y de la orientación del observador y de la fuente. Con esto en mente, se deriva una solución UTD con IBC para los campos superficiales teniendo en cuenta las dependencias de la impedancia de superficie. La expansión asintótica se realiza, mediante la transformación de Watson, sobre la representación en serie de las funciones de Green correspondientes, evitando as í calcular las derivadas de orden superior de las integrales de tipo Fock, y dando lugar a una solución rápida y precisa. En los ejemplos numéricos realizados se observa una muy buena precisión cuando el cilindro y la separación entre el observador y la fuente son grandes. Esta solución, junto con el método de los momentos (MoM), se puede aplicar para el cálculo eficiente del acoplamiento mutuo de grandes arrays conformados de antenas de parches. Los métodos propuestos basados en UTD para el cálculo del campo electromagnético dispersado y superficial sobre un cilindro PEC recubierto de dieléctrico con una IBC efectiva suponen un primer paso hacia la generalización de una solución UTD para superficies metálicas convexas arbitrarias cubiertas por un material no conductor e iluminadas por una fuente electromagnética arbitraria. ABSTRACT With this thesis ”Development of a Uniform Theory of Diffraction for Scattered and Surface Electromagnetic Field Analysis on a Cylinder” we have initiated a line of investigation whose goal is to answer the following question: what is the surface impedance which describes a perfect electric conductor (PEC) convex structure covered by a material coating? These studies are of current and future interest for predicting the electromagnetic (EM) fields incident, radiating or propagating on locally smooth convex parts of highly metallic structures with a material coating, or by a lossy metallic surfaces, as for example in aerospace, maritime and automotive applications. Moreover, from a theoretical point of view, the surface impedance characterization of PEC surfaces with or without a material coating represents a generalization of independent solutions for both type of problems. A uniform geometrical theory of diffraction (UTD) is developed in this thesis for analyzing the canonical problem of EM scattered and surface field by an electrically large circular cylinder with an impedance boundary condition (IBC) in the high frequency regime, by means of a surface impedance characterization. The construction of a UTD solution for this canonical problem is crucial for the development of the corresponding UTD solution for the more general case of an arbitrary smooth convex surface, via the principle of the localization of high frequency EM fields. The development of the present doctoral thesis has been carried out through a series of landmarks that are enumerated as follows, emphasizing the main contributions that this work has given rise to. Initially, a profound revision is made in the state of art of asymptotic methods where numerous references are given. Thus, any reader may know the history of geometrical optics (GO) and geometrical theory of diffraction (GTD), which led to the development of UTD. Then, the UTD is deeply investigated and the main studies which are found in the literature are shown. This chapter situates us in the position to state that, as far as we know, nobody has attempted before to perform a rigorous research about the surface impedance characterization for material-coated PEC convex structures via UTD. First, a UTD solution is developed for the canonical problem of the EM scattering by an electrically large circular cylinder with a uniform IBC, when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transformation, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the GO or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution. Then, an effective IBC is developed for the EM scattered field on a coated PEC circular cylinder illuminated by an obliquely incident plane wave. Two surface impedances are derived in a direct relation with the TM and TE surface and creeping wave modes excited on a coated cylinder. The TM and TE surface impedances are coupled at oblique incidence, and depend on the geometry of the problem and the wave numbers. Nevertheless, a constant surface impedance is found, although with a different value when the observation point lays in the lit or in the shadow region. Then, a UTD solution for the scattering of an obliquely incident plane wave on an electrically large smooth convex coated PEC cylinder is introduced, via a generalization of the canonical circular cylinder problem. The asymptotic solution is uniform because it remains continuous across the transition region, in the vicinity of the shadow boundary, and it recovers the ray optical solution in the deep lit region and the creeping wave formulation within the deep shadow region. When a coating is present a cross-polar field term is excited, which vanishes at normal incidence and in the deep lit region. The limitations of the effective surface impedance formulas are discussed, and the UTD solution is compared with some reference solutions where a very good agreement is met. And in third place, an effective surface impedance approach is introduced for determining surface fields on an electrically large coated metallic circular cylinder. Differences in analysis of rigorouslytreated coated metallic cylinders and cylinders with an IBC are discussed. While for the impedance cylinder case a single constant or uniform surface impedance is considered, for the coated metallic cylinder case two surface impedances are derived. These are associated with the TM and TE creeping wave modes excited on a cylinder and depend on observation and source positions and orientations. With this in mind, a UTD based method with IBC is derived for the surface fields by taking into account the surface impedance variation. The asymptotic expansion is performed, via the Watson transformation, over the appropriate series representation of the Green’s functions, thus avoiding higher-order derivatives of Fock-type integrals, and yielding a fast and an accurate solution. Numerical examples reveal a very good accuracy for large cylinders when the separation between the observation and the source point is large. Thus, this solution could be efficiently applied in mutual coupling analysis, along with the method of moments (MoM), of large conformal microstrip array antennas. The proposed UTD methods for scattered and surface EM field analysis on a coated PEC cylinder with an effective IBC are considered the first steps toward the generalization of a UTD solution for large arbitrarily convex smooth metallic surfaces covered by a material coating and illuminated by an arbitrary EM source.
Resumo:
In nature, several types of landforms have simple shapes: as they evolve they tend to take on an ideal, simple geometric form such as a cone, an ellipsoid or a paraboloid. Volcanic landforms are possibly the best examples of this ?ideal? geometry, since they develop as regular surface features due to the point-like (circular) or fissure-like (linear) manifestation of volcanic activity. In this paper, we present a geomorphometric method of fitting the ?ideal? surface onto the real surface of regular-shaped volcanoes through a number of case studies (Mt. Mayon, Mt. Somma, Mt. Semeru, and Mt. Cameroon). Volcanoes with circular, as well as elliptical, symmetry are addressed. For the best surface fit, we use the minimization library MINUIT which is made freely available by the CERN (European Organization for Nuclear Research). This library enables us to handle all the available surface data (every point of the digital elevation model) in a one-step, half-automated way regardless of the size of the dataset, and to consider simultaneously all the relevant parameters of the selected problem, such as the position of the center of the edifice, apex height, and cone slope, thanks to the highly performing adopted procedure. Fitting the geometric surface, along with calculating the related error, demonstrates the twofold advantage of the method. Firstly, we can determine quantitatively to what extent a given volcanic landform is regular, i.e. how much it follows an expected regular shape. Deviations from the ideal shape due to degradation (e.g. sector collapse and normal erosion) can be used in erosion rate calculations. Secondly, if we have a degraded volcanic landform, whose geometry is not clear, this method of surface fitting reconstructs the original shape with the maximum precision. Obviously, in addition to volcanic landforms, this method is also capable of constraining the shapes of other regular surface features such as aeolian, glacial or periglacial landforms.
Resumo:
Early in ontogeny, the secondary lymphoid organs become populated with numerous cells of mesodermal origin which forms both the lymphoid and stromal elements. The critical receptor/ligand interactions necessary for lymphoid organogenesis to occur are for the most part unknown. Although lymphotoxin-α (LTα) has been shown to be required for normal lymph node, Peyer’s patch, and splenic development, it is unclear if soluble LTα3, and/or cell-bound lymphotoxin-αβ (LTαβ) mediate these developmental events. Here we report that blocking LTαβ/lymphotoxin-β receptor (LTβR) interaction in vivo by generating mice which express a soluble LTβR–Fc fusion protein driven by the human cytomegalovirus promoter results in an array of anatomic abnormalities affecting both the spleen and Peyer’s patches, but not the lymph nodes. These results demonstrate that surface LTαβ ligand plays a critical role in normal lymphoid organ development.
Resumo:
Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1α (MIP-1α), and MIP-1β, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokine–GAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.