Tenascin-C is required for normal Wnt/β-catenin signaling in the whisker follicle stem cell niche.
Data(s) |
01/11/2014
|
---|---|
Resumo |
Whisker follicles have multiple stem cell niches, including epidermal stem cells in the bulge as well as neural crest-derived stem cells and mast cell progenitors in the trabecular region. The neural crest-derived stem cells are a pool of melanocyte precursors. Previously, we found that the extracellular matrix glycoproteins tenascin-C and tenascin-W are expressed near CD34-positive cells in the trabecular stem cell niche of mouse whisker follicles. Here, we analyzed whiskers from tenascin-C knockout mice and found intrafollicular adipocytes and supernumerary mast cells. As Wnt/β-catenin signaling promotes melanogenesis and suppresses the differentiation of adipocytes and mast cells, we analyzed β-catenin subcellular localization in the trabecular niche. We found cytoplasmic and nuclear β-catenin in wild-type mice reflecting active Wnt/β-catenin signaling, whereas β-catenin in tenascin-C knockout mice was mostly cell membrane-associated and thus transcriptionally inactive. Furthermore, cells expressing the Wnt/β-catenin target gene cyclin D1 were enriched in the CD34-positive niches of wild-type compared to tenascin-C knockout mice. We then tested the effects of tenascins on this signaling pathway. We found that tenascin-C and tenascin-W can be co-precipitated with Wnt3a. In vitro, substrate bound tenascins promoted β-catenin-mediated transcription in the presence of Wnt3a, presumably due to the sequestration and concentration of Wnt3a near the cell surface. We conclude that the presence of tenascin-C in whiskers assures active Wnt/β-catenin signaling in the niche thereby maintaining the stem cell pool and suppressing aberrant differentiation, while in the knockout mice with reduced Wnt/β-catenin signaling, stem cells from the trabecular niche can differentiate into ectopic adipocytes and mast cells. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/62146/3/HendaouiI2014MatrixBiol46.pdf Hendaoui, Ismaïl; Tucker, Richard P; Zingg, Dominik; Bichet, Sandrine; Schittny, Johannes; Chiquet-Ehrismann, Ruth (2014). Tenascin-C is required for normal Wnt/β-catenin signaling in the whisker follicle stem cell niche. Matrix biology, 40, pp. 46-53. Elsevier 10.1016/j.matbio.2014.08.017 <http://dx.doi.org/10.1016/j.matbio.2014.08.017> doi:10.7892/boris.62146 info:doi:10.1016/j.matbio.2014.08.017 info:pmid:25196097 urn:issn:0945-053X |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://boris.unibe.ch/62146/ |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Hendaoui, Ismaïl; Tucker, Richard P; Zingg, Dominik; Bichet, Sandrine; Schittny, Johannes; Chiquet-Ehrismann, Ruth (2014). Tenascin-C is required for normal Wnt/β-catenin signaling in the whisker follicle stem cell niche. Matrix biology, 40, pp. 46-53. Elsevier 10.1016/j.matbio.2014.08.017 <http://dx.doi.org/10.1016/j.matbio.2014.08.017> |
Palavras-Chave | #570 Life sciences; biology |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |