970 resultados para Surface air voids


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 1907–2001 summer-to-summer surface air temperature variability in the eastern part of southern South America (SSA, partly including Patagonia) is analysed. Based on records from instruments located next to the Atlantic Ocean (36°S–55°S), we define indices for the interannual and interdecadal timescales. The main interdecadal mode reflects the late-1970s cold-to-warm climate shift in the region and a warm-to-cold transition during early 1930s. Although it has been in phase with the Pacific Decadal Oscillation (PDO) index since the 1960s, they diverged in the preceding decades. The main interannual variability index exhibits high spectral power at ~3.4 years and is representative of temperature variability in a broad area in the southern half of the continent. Eleven-years running correlation coefficients between this index and December-to-February (DJF) Niño3.4 show significant decadal fluctuations, out-of-phase with the running correlation with a DJF index of the Southern Annular Mode. The main interannual variability index is associated with a barotropic wavetrain-like pattern extending over the South Pacific from Oceania to SSA. During warm (cold) summers in SSA, significant anticyclonic (cyclonic) anomalies tend to predominate over eastern Australia, to the north of the Ross Sea, and to the east of SSA, whereas anomalous cyclonic (anticyclonic) circulation is observed over New Zealand and west of SSA. This teleconnection links warm (cold) SSA anomalies with dry (wet) summers in eastern Australia. The covariability seems to be influenced by the characteristics of tropical forcing; indeed, a disruption has been observed since late 1970s, presumably due to the PDO warm phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The International Surface Temperature Initiative (ISTI) is striving towards substantively improving our ability to robustly understand historical land surface air temperature change at all scales. A key recently completed first step has been collating all available records into a comprehensive open access, traceable and version-controlled databank. The crucial next step is to maximise the value of the collated data through a robust international framework of benchmarking and assessment for product intercomparison and uncertainty estimation. We focus on uncertainties arising from the presence of inhomogeneities in monthly mean land surface temperature data and the varied methodological choices made by various groups in building homogeneous temperature products. The central facet of the benchmarking process is the creation of global-scale synthetic analogues to the real-world database where both the "true" series and inhomogeneities are known (a luxury the real-world data do not afford us). Hence, algorithmic strengths and weaknesses can be meaningfully quantified and conditional inferences made about the real-world climate system. Here we discuss the necessary framework for developing an international homogenisation benchmarking system on the global scale for monthly mean temperatures. The value of this framework is critically dependent upon the number of groups taking part and so we strongly advocate involvement in the benchmarking exercise from as many data analyst groups as possible to make the best use of this substantial effort.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An  ∼ 1000-member ensemble of the Bern3D-LPJ carbon–climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Arctic sea ice cover declined over the last few decades and reached a record minimum in 2007, with a slight recovery thereafter. Inspired by this the authors investigate the response of atmospheric and oceanic properties to a 1-yr period of reduced sea ice cover. Two ensembles of equilibrium and transient simulations are produced with the Community Climate System Model. A sea ice change is induced through an albedo change of 1 yr. The sea ice area and thickness recover in both ensembles after 3 and 5 yr, respectively. The sea ice anomaly leads to changes in ocean temperature and salinity to a depth of about 200 m in the Arctic Basin. Further, the salinity and temperature changes in the surface layer trigger a “Great Salinity Anomaly” in the North Atlantic that takes roughly 8 yr to travel across the North Atlantic back to high latitudes. In the atmosphere the changes induced by the sea ice anomaly do not last as long as in the ocean. The response in the transient and equilibrium simulations, while similar overall, differs in specific regional and temporal details. The surface air temperature increases over the Arctic Basin and the anomaly extends through the whole atmospheric column, changing the geopotential height fields and thus the storm tracks. The patterns of warming and thus the position of the geopotential height changes vary in the two ensembles. While the equilibrium simulation shifts the storm tracks to the south over the eastern North Atlantic and Europe, the transient simulation shifts the storm tracks south over the western North Atlantic and North America. The authors propose that the overall reduction in sea ice cover is important for producing ocean anomalies; however, for atmospheric anomalies the regional location of the sea ice anomalies is more important. While observed trends in Arctic sea ice are large and exceed those simulated by comprehensive climate models, there is little evidence based on this particular model that the seasonal loss of sea ice (e.g., as occurred in 2007) would constitute a threshold after which the Arctic would exhibit nonlinear, irreversible, or strongly accelerated sea ice loss. Caution should be exerted when extrapolating short-term trends to future sea ice behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study compares gridded European seasonal series of surface air temperature (SAT) and precipitation (PRE) reconstructions with a regional climate simulation over the period 1500–1990. The area is analysed separately for nine subareas that represent the majority of the climate diversity in the European sector. In their spatial structure, an overall good agreement is found between the reconstructed and simulated climate features across Europe, supporting consistency in both products. Systematic biases between both data sets can be explained by a priori known deficiencies in the simulation. Simulations and reconstructions, however, largely differ in the temporal evolution of past climate for European subregions. In particular, the simulated anomalies during the Maunder and Dalton minima show stronger response to changes in the external forcings than recorded in the reconstructions. Although this disagreement is to some extent expected given the prominent role of internal variability in the evolution of regional temperature and precipitation, a certain degree of agreement is a priori expected in variables directly affected by external forcings. In this sense, the inability of the model to reproduce a warm period similar to that recorded for the winters during the first decades of the 18th century in the reconstructions is indicative of fundamental limitations in the simulation that preclude reproducing exceptionally anomalous conditions. Despite these limitations, the simulated climate is a physically consistent data set, which can be used as a benchmark to analyse the consistency and limitations of gridded reconstructions of different variables. A comparison of the leading modes of SAT and PRE variability indicates that reconstructions are too simplistic, especially for precipitation, which is associated with the linear statistical techniques used to generate the reconstructions. The analysis of the co-variability between sea level pressure (SLP) and SAT and PRE in the simulation yields a result which resembles the canonical co-variability recorded in the observations for the 20th century. However, the same analysis for reconstructions exhibits anomalously low correlations, which points towards a lack of dynamical consistency between independent reconstructions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents a comprehensive assessment of high-resolution Southern Hemisphere (SH) paleoarchives covering the last 2000 years. We identified 174 monthly to annually resolved climate proxy (tree ring, coral, ice core, documentary, speleothem and sedimentary) records from the Hemisphere. We assess the interannual and decadal sensitivity of each proxy record to large-scale circulation indices from the Pacific, Indian and Southern Ocean regions over the twentieth century. We then analyse the potential of this newly expanded palaeoclimate network to collectively represent predictands (sea surface temperature, sea level pressure, surface air temperature and precipitation) commonly used in climate reconstructions. The key dynamical centres-of-action of the equatorial Indo-Pacific are well captured by the palaeoclimate network, indicating that there is considerable reconstruction potential in this region, particularly in the post AD 1600 period when a number of long coral records are available. Current spatiotemporal gaps in data coverage and regions where significant potential for future proxy collection exists are discussed. We then highlight the need for new and extended records from key dynamical regions of the Southern Hemisphere. Although large-scale climate field reconstructions for the SH are in their infancy, we report that excellent progress in the development of regional proxies now makes plausible estimates of continental- to hemispheric-scale climate variations possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of atmospheric radioactivity attached to aerosols are described. Fallout was collected in a vessel of large area. Emphasis was on separation of "wet" and "dry" samples. For strontium 90 a ratio of "wet" to "dry" fallout of 5:1 has been found independent of latitude. The total fallout was smaller than comparable values from continents because of very small amounts of rainfall in the equatorial zone. In order to achieve consistency in the global balance a better knowledge not only of radioactivity but also of precipitation over the ocean is required. Fallout of Ra-D clearly shows the ITC as a barrier for the latitudinal movement of near sea-surface air masses. The concentration of short-lived emanation daughters shows large variations according to varying geographic conditions. A variation with time could not be explained. The specific activity of long-lived radioactive substances shows the expected effect of the ITC as well as a seasonal diminuation of average concentration, similar to that measured at Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding recent Arctic climate change requires detailed information on past changes, in particular on a regional scale. The extension of the depth-age relation of the Akademii Nauk (AN) ice core from Severnaya Zemlya (SZ) to the last 1100 yr provides new perspectives on past climate fluctuations in the Barents and Kara seas region. Here, we present the easternmost high-resolution ice-core climate proxy records (d18O and sodium) from the Arctic. Multi-annual AN d18O data as near-surface air-temperature proxies reveal major temperature changes over the last millennium, including the absolute minimum around 1800 and the unprecedented warming to a double-peak maximum in the early 20th century. The long-term cooling trend in d18O is related to a decline in summer insolation but also to the growth of the AN ice cap as indicated by decreasing sodium concentrations. Neither a pronounced Medieval Climate Anomaly nor a Little Ice Age are detectable in the AN d18O record. In contrast, there is evidence of several abrupt warming and cooling events, such as in the 15th and 16th centuries, partly accompanied by corresponding changes in sodium concentrations. These abrupt changes are assumed to be related to sea-ice cover variability in the Barents and Kara seas region, which might be caused by shifts in atmospheric circulation patterns. Our results indicate a significant impact of internal climate variability on Arctic climate change in the last millennium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dataset described in this document has been put together for the purposes of numerical ice sheet modelling of the Antarctic Ice Sheet (AIS), containing data on the ice sheet configuration (e.g. ice surface and ice thickness) and boundary conditions, such as the surface air temperature and accumulation. It is now possible to download a community ice sheet model (e.g. Glimmer-CISM, Rutt et al., 2009 doi:10.1029/2008JF001015), but without adequate data it is difficult to utilise such models. More specifically, ice sheet models that are initialised and run forward from the present day ice sheet configuration, need input data to represent the present-day ice sheet configuration as closely as possible (unlike those spun-up from ice free conditions, which only require the bed/bathymetry). Whilst the BEDMAP dataset (Lythe et al., 2001) was a step forward when it was made, there are a number of inconsistencies within the dataset (see Section 3), and since its release, more data has become available. The dataset described here incorporates some major new datasets (e.g. AGASEA/BBAS ice thickness, Nitsche et al. (2006) bathymetry doi:10.1029/2007GC001694), but by no means incorporates all the new data available. This considerable task is left for a 'BEDMAP2', (an updated version of BEDMAP), however, the processing carried out in this document illustrates the requirements of a dataset for the purpose of high resolution ice sheet modelling, and bridges the gap until a BEDMAP2 is published. It is envisaged, however, that updated versions of the data set will be made available periodically when new regional data sets become available and can be readily incorporated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cessation of the Atlantic meridional overturning circulation (AMOC) significantly reduces northward oceanic heat transport. In response to anomalous freshwater flux, this leads to the classic 'bipolar see-saw' pattern of northern cooling and southern warming in surface air and ocean temperatures. By contrast, as shown here in a coupled climate model, both northern and southern cooling are observed for an AMOC reduction in response to reduced wind stress in the Southern Ocean (SO). For very weak SO wind stress, not only the overturning circulation collapses, but sea ice export from the SO is strongly reduced. Consequently, sea ice extent and albedo increase in this region. The resulting cooling overcompensates the warming by the reduced northward heat transport. The effect depends continuously on changes in wind stress and is reversed for increased winds. It may have consequences for abrupt climate change, the last deglaciation and climate sensitivity to increasing atmospheric CO_2 concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Atlantic thermohaline circulation (THC) is an important part of the earth's climate system. Previous research has shown large uncertainties in simulating future changes in this critical system. The simulated THC response to idealized freshwater perturbations and the associated climate changes have been intercompared as an activity of World Climate Research Program (WCRP) Coupled Model Intercomparison Project/Paleo-Modeling Intercomparison Project (CMIP/PMIP) committees. This intercomparison among models ranging from the earth system models of intermediate complexity (EMICs) to the fully coupled atmosphere-ocean general circulation models (AOGCMs) seeks to document and improve understanding of the causes of the wide variations in the modeled THC response. The robustness of particular simulation features has been evaluated across the model results. In response to 0.1-Sv (1 Sv equivalent to 10^6 ms^3 s^-1) freshwater input in the northern North Atlantic, the multimodel ensemble mean THC weakens by 30% after 100 yr. All models simulate sonic weakening of the THC, but no model simulates a complete shutdown of the THC. The multimodel ensemble indicates that the surface air temperature could present a complex anomaly pattern with cooling south of Greenland and warming over the Barents and Nordic Seas. The Atlantic ITCZ tends to shift southward. In response to 1.0-Sv freshwater input, the THC switches off rapidly in all model simulations. A large cooling occurs over the North Atlantic. The annual mean Atlantic ITCZ moves into the Southern Hemisphere. Models disagree in terms of the reversibility of the THC after its shutdown. In general, the EMICs and AOGCMs obtain similar THC responses and climate changes with more pronounced and sharper patterns in the AOGCMs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os procedimentos de dosagem Marshall e Superpave definem os teores de ligante de projeto baseados em parâmetros volumétricos. Nessa situação, sistemáticas de dosagem com tipos de compactação diferentes podem conduzir a teores de ligante de projeto distintos que definirão a vida útil dos revestimentos asfálticos. O objetivo principal desse trabalho é avaliar o comportamento mecânico de misturas asfálticas moldadas por diferentes métodos de compactação de laboratório e analisar a relação com os resultados de amostras obtidas a partir de misturas compactadas por rolagem pneumática na mesa compactadora francesa. A fase experimental consistiu na dosagem de misturas pelos métodos Marshall e Superpave (este último com dois tamanhos de moldes), além da compactação na Prensa de Cisalhamento Giratória (PCG) e da moldagem de placas na mesa compactadora. Avaliou-se o efeito do tipo de compactação, do tamanho do molde e do número de giros do Compactador Giratório Superpave (CGS) no teor de projeto, nos parâmetros volumétricos, no comportamento mecânico e no desempenho quanto à fadiga e à resistência ao afundamento em trilha de roda. Adicionalmente, foi avaliada a eficiência do método Bailey de composição granulométrica quanto à resistência à deformação permanente em função do tipo de agregado. Constatou-se que o método Bailey, por si só, não garante resistência à deformação permanente, sendo essa dependente do tipo de agregado incluindo seus parâmetros de forma. O principal produto da pesquisa, com efeitos práticos no projeto de misturas asfálticas, traduz-se na recomendação do método Superpave com molde de 100 mm (para TMN <= 12,5 mm) para volume de tráfego médio a alto em detrimento ao método Superpave com 150 mm, tendo em vista que o primeiro apresenta densificação mais semelhante às amostras preparadas na compactação por rolagem (similar ao que ocorre em pista) o que resulta em comportamento mecânico também mais próximo da realidade de campo. A utilização dos moldes de 150 mm de diâmetro no CGS pode ser viabilizada desde que se adote um número de giros menor do aquele proposto para projeto pelo Asphalt Institute (2001). Por fim, é fundamental que os ensaios e os cálculos para obtenção dos parâmetros volumétricos e escolha do teor de projeto sigam ao normatizado pela ASTM, pelo Asphalt Institute (2001) e pela ABNT.