979 resultados para Superoxide reductase
Resumo:
To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.
Resumo:
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.
Resumo:
The cellular response to an inflammatory stressor requires a proinflammatory cellular activation followed by a controlled resolution of the response to restore homeostasis. We hypothesized that biliverdin reductase (BVR) by binding biliverdin (BV) quells the cellular response to endotoxin-induced inflammation through phosphorylation of endothelial nitric oxide synthase (eNOS). The generated NO, in turn, nitrosylates BVR, leading to nuclear translocation where BVR binds to the Toll-like receptor-4 (TLR4) promoter at the Ap-1 sites to block transcription. We show in macrophages that BV-induced eNOS phosphorylation (Ser-1177) and NO production are mediated in part by Ca(2+)/calmodulin-dependent kinase kinase. Furthermore, we show that BVR is S-nitrosylated on one of three cysteines and that this posttranslational modification is required for BVR-mediated signaling. BV-induced nuclear translocation of BVR and inhibition of TLR4 expression is lost in macrophages derived from Enos(-/-) mice. In vivo in mice, BV provides protection from acute liver damage and is dependent on the availability of NO. Collectively, we elucidate a mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages.
Resumo:
The relationship between the structures of protein-ligand complexes existing in the crystal and in solution, essential in the case of fragment-based screening by X-ray crystallography (FBS-X), has been often an object of controversy. To address this question, simultaneous co-crystallization and soaking of two inhibitors with different ratios, Fidarestat (FID; K(d) = 6.5 nM) and IDD594 (594; K(d) = 61 nM), which bind to h-aldose reductase (AR), have been performed. The subatomic resolution of the crystal structures allows the differentiation of both inhibitors, even when the structures are almost superposed. We have determined the occupation ratio in solution by mass spectrometry (MS) Occ(FID)/Occ(594) = 2.7 and by X-ray crystallography Occ(FID)/Occ(594) = 0.6. The occupancies in the crystal and in solution differ 4.6 times, implying that ligand binding potency is influenced by crystal contacts. A structural analysis shows that the Loop A (residues 122-130), which is exposed to the solvent, is flexible in solution, and is involved in packing contacts within the crystal. Furthermore, inhibitor 594 contacts the base of Loop A, stabilizing it, while inhibitor FID does not. This is shown by the difference in B-factors of the Loop A between the AR-594 and AR-FID complexes. A stable loop diminishes the entropic energy barrier to binding, favoring 594 versus FID. Therefore, the effect of the crystal environment should be taken into consideration in the X-ray diffraction analysis of ligand binding to proteins. This conclusion highlights the need for additional methodologies in the case of FBS-X to validate this powerful screening technique, which is widely used.
Resumo:
In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.
Resumo:
Nitrate reductase is the first enzyme in the pathway of nitrate reduction by plants, followed by glutamine synthetase, which incorporates ammonia to glutamine. The purpose of this study was to evaluate the nitrate reductase and glutamine synthetase activity, total soluble protein content, N and Ni content in coffee leaves during fruit development under field conditions to establish new informations to help assess the N nutritional status and fertilizer management. The experimental design was in randomized complete blocks, arranged in a 3 x 6 factorial design, with five replications. The treatments consisted of 3 N rates (0 - control, 150 and 300 kg ha-1) and six evaluation periods (January, February, March, April, May, and June) in six-year-old coffee (Coffea arabica L.) plants of Catuaí Vermelho IAC 44 cv. The nitrate reductase and glutamine synthetase activities, leaf soluble protein, and N concentrations increased linearly with the N rates. During fruit development, the enzyme activity, leaf soluble protein and N content decreased, due to the leaf senescence process caused by nutrient mobilization to other organs, e.g, to the berries. Leaf Ni increased during fruit development. Beans and raisin-fruits of plants well-supplied with N had higher Ni contents. Enzyme activities, total leaf N and leaf soluble protein, evaluated during the green fruit stage in March, were significantly correlated with coffee yield. These variables can therefore be useful for an early assessment of the coffee N nutritional status as well as coffee yield and N fertilization management.
Resumo:
Nitrogen and K deficiency are among the most yield limiting factors in Brazilian pastures. The lack of these nutrients can hamper the chlorophyll biosynthesis and N content in plant tissues. A greenhouse experiment was carried out to evaluate the relationship among N and K concentrations, the indirect determination of chlorophyll content (SPAD readings), nitrate reductase activity (RNO3-) in newly expanded leaf lamina (NL) and the dry matter yield for plant tops of Mombaça grass (Panicum maximum Jacq.). A fractionated 5² factorial design was used, with 13 combinations of N and K rates in the nutrient solution. The experimental units were arranged in a randomized block design, with four replications. Plants were harvested twice. The first harvest occurred 36 days after seedling transplanting and the second 29 days after the first. Significance occurred for the interaction between the N and K rates to SPAD readings and to RNO3- assessment taken on the NL during the first growth. Besides, RNO3- and SPAD readings increased only with the NL N concentration, reaching the highest values of both variables up to about 25 g kg-1, but were ratively constant at higher leaf N. Significant relationships either between SPAD readings or RNO3- activity and shoot dry mass weight were also observed. The critical levels of N concentration in the NL were, respectively, 22 and 17g kg-1 in the first and second harvest. Thus, SPAD instrument and RNO3- assessment can be used as complementary tools to evaluate the N status in forage grass.
Resumo:
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
In order to identify useful parameters for maize genetic breeding programs aiming at a more efficient use of N, two maize varieties of contrasting N efficiency, Sol da Manhã NF (efficient) and Catetão (inefficient) were compared. Experiments were carried out under field and greenhouse conditions, at low and high N levels. The parameters analysed included total and relative plant and grain N content, biomass and the activities of nitrate reductase and glutamine synthetase in different parts of the plant. It was found that the translocation efficiency of N and photoassimilates to the developing seeds and the source-sink relations were significantly different for the two varieties. N content of the whole plant and grain, cob weight and the relative ear dry weight were useful parameters for characterizing the variety Sol da Manhã NF as to its efficient use of N. Enzymes activity of glutamine synthetase (transferase reaction) and nitrate reductase did not differ among the varieties.
Resumo:
The bioavailability of nitric oxide (NO) within the vascular wall is limited by superoxide anions (O2.-). The relevance of extracellular superoxide dismutase (ecSOD) for the detoxification of vascular O2.- is unknown. We determined the involvement of ecSOD in the control of blood pressure and endothelium-dependent responses in angiotensin II-induced hypertension and renovascular hypertension induced by the two-kidney, one-clip model in wild-type mice and mice lacking the ecSOD gene. Blood pressure was identical in sham-operated ecSOD+/+ and ecSOD-/- mice. After 6 days of angiotensin II-treatment and 2 and 4 weeks after renal artery clipping, blood pressure was significantly higher in ecSOD-/- than ecSOD+/+ mice. Recombinant ecSOD selectively decreased blood pressure in hypertensive ecSOD-/- mice, whereas ecSOD had no effect in normotensive and hypertensive ecSOD+/+ mice. Compared with sham-operated ecSOD+/+ mice, sham-operated ecSOD-/- mice exhibited attenuated acetylcholine-induced relaxations. These responses were further depressed in vessels from clipped animals. Vascular O2.-, as measured by lucigenin chemiluminescence, was higher in ecSOD-/- compared with ecSOD+/+ mice and was increased by clipping. The antioxidant tiron normalized relaxations in vessels from sham-operated and clipped ecSOD-/-, as well as from clipped ecSOD+/+ mice. In contrast, in vivo application of ecSOD selectively enhanced endothelium-dependent relaxation in vessels from ecSOD-/- mice. These data reveal that endogenous ecSOD is a major antagonistic principle to vascular O2.-, controlling blood pressure and vascular function in angiotensin II-dependent models of hypertension. ecSOD is expressed in such an abundance that even in situations of high oxidative stress no relative lack of enzyme activity occurs.
Resumo:
A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.