1000 resultados para Supercritical Conditions
Resumo:
The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on Lactobacillus acidophilus La-5 viability and resistance to gastric and enteric simulated conditions in synbiotic guava mousses effects were investigated. Refrigerated mousses supplemented with WPC presented the best probiotic viability. ranging from 7.77 to 6.24 log cfu/g during 28 days of storage. The highest probiotic populations, above 7.45 log cfu/g, were observed for all frozen mousses during 112 days of storage. Decreased L acidophilus survival during the in vitro gastrointestinal simulation was observed both for refrigerated and frozen mousses. Nonetheless, for the refrigerated mousses, the addition of inulin enhanced the probiotic survival during the in vitro assays in the first week of storage. L acidophilus survival in simulated gastrointestinal fluids was also improved through freezing. The frozen storage may be used to provide increased shelf-life for synbiotic guava mousses. Even though the protective effect of inulin and WPC on the probiotic microorganism tested was shown to be more specific for the refrigerated products, the partial replacement of milk fat by these ingredients may also help, as it improves the nutritional value of mousses in both storage conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effects of different cooking conditions such as soaking, atmospheric (100 degrees C) or pressure boiling (121 degrees C), and draining of cooking water following thermal treatment on phenolic compounds and the DPPH radical scavenging capacity from two selected Brazilian bean cultivars (black and yellow-brown seed coat color) were investigated using a factorial design (2(3)). Factors that significantly reduced the total phenolic contents and antioxidant capacity in both cultivars were the soaking and draining stage. Independent of cooking temperature, total phenolics and antioxidant capacities were enhanced in treatments without soaking and where cooking water was not discarded, and this was likely linked to an increase of specific phenolic compounds detected by high performance liquid chromatography such as flavonols and free phenolic acids in both cultivars. Cooking of beans either at 100 or 121 degrees C, without a soaking stage and keeping the cooking water, would be recommendable for retaining antioxidant phenolic compounds.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
The effect of addition of rosemary and oregano extracts on the sensory quality of irradiated beef burger was investigated. Batches of beef burgers were prepared with 400 ppm of rosemary or oregano extract and a group prepared with 200 ppm of synthetic butyl-hydroxytoluene (BHT)/butyl-hydroxy-anisol (BHA) was used as a control. Half of each formulation was irradiated at the maximum dose allowed for frozen meat (7 kGy). Samples were kept under frozen conditions (-20 degrees C) during the whole storage period, including during irradiation. Two analyses were performed after 20 and 90 days to verify the influence of the addition of the different types of antioxidants and the effect of irradiation and storage time on the acceptance of the product. Thirty-three and thirty-four untrained panelists were invited to participate in the first and second test, respectively. A structured hedonic scale ranging from 1 to 9 points was used in both analyses. BHT/BHA formulation obtained the highest score (6.73) and regarding the natural antioxidants, oregano received better acceptance (6.36). Irradiated samples formulated with oregano received a lower score, 6.03 in the first test and 5.06 in the second one, compared to the non-irradiated sample (6.36 and 5.79). In the second test (90 days), the sample formulated with BHT/BHA and which was irradiated received a higher score (6.59) when compared to the non-irradiated one (5.85). In both tests, the irradiated samples formulated with rosemary extract obtained a better score compared to the non-irradiated one, the scores being 5.00-3.82 and 5.00-3.76 in the first and second test, respectively. Our results allowed us to conclude that the natural antioxidants, rosemary and oregano extracts, present a good alternative for replacing synthetic additives in food industries, and that the irradiation process, in some cases, may help to enhance the sensory quality of food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Age is a critical determinant of an adult female mosquito's ability to transmit a range of human pathogens. Despite its central importance, relatively few methods exist with which to accurately determine chronological age of field-caught mosquitoes. This fact is a major constraint on our ability to fully understand the relative importance of vector longevity to disease transmission in different ecological contexts. It also limits our ability to evaluate novel disease control strategies that specifically target mosquito longevity. We report the development of a transcriptional profiling approach to determine age of adult female Aedes aegypti under field conditions. We demonstrate that this approach surpasses current cuticular hydrocarbon methods for both accuracy of predicted age as well as the upper limits at which age can be reliably predicted. The method is based on genes that display age-dependent expression in a range of dipteran insects and, as such, is likely to be broadly applicable to other disease vectors.
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
In high-velocity open channel flows, free-surface aeration is commonly observed. The effects of surface waves on the air-water flow properties are tested herein. The study simulates the air-water flow past a fixed-location phase-detection probe by introducing random fluctuations of the flow depth. The present model yields results that are close to experimental observations in terms of void fraction, bubble count rate and bubble/droplet chord size distributions. The results show that the surface waves have relatively little impact on the void fraction profiles, but that the bubble count rate profiles and the distributions of bubble and chord sizes are affected by the presence of surface waves.
Resumo:
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.
Resumo:
Little is known about Mg induced Ca deficiency in alkaline conditions, and the relationship between Mg induced Ca deficiency and Na induced Ca deficiency. Dilute nutrient solutions (dominated by Mg) were used to investigate the effect of Ca activity ratio (CAR) on the growth of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald). At pH 9.0, root growth was reduced below a critical CAR of 0.050 (corresponding to 90 % relative root length). Root growth was found to be limited more in Mg solutions than had been previously observed for Na solutions. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for both Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present.
Resumo:
A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V.
Resumo:
The most common types of weirs are the broad-crested weir, the sharp-crested weir, the circular-crested weir, and nowadays, the ogee crest weir, Advantages of the cylindrical weir shape include the stable overflow pattern, the ease to pass floating debris, the simplicity of design compared to ogee crest design, and the associated lower costs. in this study, the writers describe new experiments of circular weir overflows, with eight cylinder sizes, for several weir heights and for five types of inflow conditions: partially developed inflow, fully developed inflow, upstream ramp, upstream undular hydraulic jump, and upstream (breaking) hydraulic jump. Within the range of the experiments, the cylinder size, the weir height DIR and the presence of an upstream ramp had no effect on the discharge coefficient, flow depth at crest, and energy dissipation. But the inflow conditions had substantial effects on the discharge characteristics and flow properties at the crest. Practically, the results indicate that discharge measurements with circular weirs are significantly affected by the upstream flow conditions.
Resumo:
New classes of integrable boundary conditions for the q-deformed (or two-parameter) supersymmetric U model are presented. The boundary systems are solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.