958 resultados para Sublimation and Unconscious


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular and ionic composition of vapor over erbium tribromide sublimed from the Knudsen effusion cell and the open surface of a single crystal was studied by high-temperature mass spectrometry. The partial pressures of ErBr3 and Er2Br6 molecules in saturated vapor and the ratio between their sublimation coefficients under free vaporization conditions were determined. The enthalpies and activation energies of sublimation of ErBr3 crystals in the form of monomers and dimers were calculated. The emission of and Er2 was recorded in studies of ionic sublimation in both modes. The enthalpies of formation of gas molecules and ions were determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels ("araneiform" terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular and ionic composition of saturated vapor over lanthanum triiodide was studied by Knudsen effusion mass spectrometry. The (LaI3)n molecules (n = 1–3) and the [I(LaI3)n]− ions (n = 0–4) were observed. The partial pressures of the molecules were determined and the enthalpies of sublimation, ΔsH° (298.15 K) in kJ mol−1, in the form of monomers (304 ± 7), dimers (428 ± 25), and trimers (455 ± 50) were obtained by the second and third laws of thermodynamics. The enthalpy of formation, ΔfH° (298.15 K) in kJ mol−1, of the LaI3 (−376 ± 10), La2I6 (−932 ± 25), La3I9 (−1585 ± 50) molecules and the LaI4− (−841 ± 24), La2I7− (−1486 ± 32) ions were determined. The electron work function, φe = 3.5 ± 0.3 eV, for the LaI3 crystal was calculated from the thermochemical cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sublimation, the direct transition from solid to gas phase, is a process responsible for shaping and changing the reflectance properties of many Solar System surfaces. In this study, we have characterized the evolution of the structure/texture and of the visible and near-infrared (VIS–NIR) spectral reflectance of surfaces made of water ice mixed with analogues of complex extraterrestrial organic matter, named tholins, under low temperature (<-70° C) and pressure (10-⁵mbar) conditions. The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol, A. et al. [2015a]. Planet. Space Sci. 109–110, 106–122). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit made of a water-free porous (>90% porosity) network of organic filaments on top of the ice. The temporal evolution of the tholins and water ice spectral features (reflectance at the absorption bands wavelengths, red slope, from 0.40 to 1.90lm) are analyzed throughout the sublimation of the samples. We studied how different mixtures of tholins with water (0.1 wt.% tholins as coating or inclusions within the water particles), and different ice particle sizes (4.5 ± 2.5 or 67 ± 31lm) influence the morphological and spectral evolutions of the samples. The sublimation of the ice below the mantle produces a gas flow responsible for the ejection of mm to cm-sized fragments of the deposit in outbursts-like events. The results show remarkable differences between these samples in term of mantle structure, speed of mantle building, rates and surface area of mantle ejections. These data provide useful references for interpreting remote-sensing observations of icy Solar System surfaces, in particular the activity of comet nuclei where sublimation of organic-rich ices and deposition of organic-dust particles likely play a major role. Consequently, the data presented here could be of high interest for the interpretation of Rosetta, and also New Horizons, observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surfaces of many objects in the Solar System comprise substantial quantities of water ice sometimes mixed with minerals and/or organic molecules. The sublimation of the ice changes the structural and optical properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surface analogues of cometary ices, made of water ice, complex organic matter (tholins) and silicates, as they undergo sublimation under low temperature (<-70°C) and pressure (10-⁵mbar) conditions inside the SCITEAS simulation chamber. As the water ice sublimated, we observed in situ the formation of a porous sublimation lag deposit, or sublimation mantle, at the top of the ice. This mantle is a network of filaments made of the non-volatile particles. Organics or phyllosilicates grains, able to interact via stronger inter-particulate forces than olivine grains, can form a foam-like structure having internal cohesiveness, holding olivine grains together. As this mantle builds-up, the band depths of the sub-surface water ice are attenuated until complete extinction under only few millimeters of mantle. Optically thick sublimation mantles are mainly featureless in the near infrared. The absorption bands of the minerals present in the mantle are weak, or even totally absent if minerals are mixed with organics which largely dominate the VIS–NIR reflectance spectrum. During sublimation, ejections of large fragments of mantle, triggered by the gas flow, expose ice particles to the surface. The contrast of brightness between mantled and ice-exposed areas depends on the wavelength range and the dust/ice ratio considered. We describe how the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the ice and the dust/ice mass ratio influence the texture, activity and spectro-photometric properties of the sublimation mantles. These data provide useful references for interpreting remote-sensing observations of comets and also icy satellites or trans-neptunian objects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.