990 resultados para Structural geology
Resumo:
"Prepared for the annual meeting of the Geological Society of America, Cincinnati, Ohio October 26-29, 1992."
Resumo:
Reprint. Originally published: London : Geological Society of London. (Geol. trans. 2nd ser. ; v. 4).
Resumo:
Mode of access: Internet.
Resumo:
Separatabdruck aus den Verhandlungen der Naturforschenden Gesellschaft in Basel. Bd. 24.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Acknowledgements GIA is grateful for funding from the Carnegie Trust for the Universities of Scotland that enabled fieldwork for this project. RW was supported by the Israel Science Foundation (ISF grant No. 1245/11). SM was supported by the Israel Science Foundation (ISF grant No. 1436/14). We would like to thank Chris Talbot and Yohann Poprawski for careful and constructive reviews. The authors appreciate the help of Nicolas Waldmann in precisely locating the positons of dated unconformities.
Resumo:
Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.
Resumo:
Several landforms found in the fold-and-thrust belt area of Central Precordillera, Pre-Andes of Argentina, which were often associated with tectonic efforts, are in fact related to non-tectonic processes or gravitational superficial structures. These second-order structures, interpreted as gravitational collapse structures, have developed in the western flank of sierras de La Dehesa and Talacasto. These include rock-slides, rock falls, wrinkle folds, slip sheets and flaps, among others; which together constitute a monoclinal fold dipping between 30º and 60º to the west. Gravity collapse structures are parallel to the regional strike of the Sierra de la Dehesa and are placed in Ordovician limestones and dolomites. Their sloping towards the west, the presence of bed planes, fractures and joints; and the lithology (limestone interbedded with incompetent argillaceous banks) would have favored their occurrence. Movement of the detached structures has been controlled by lithology characteristics, as well as by bedding and joints. Detachment and initial transport of gravity collapse structures and rockslides in the western flank of the Sierra de la Dehesa were tightly controlled by three structural elements: 1) sliding surfaces developed on parallel bedded strata when dipping >30° in the slope direction; 2) Joint’s sets constitute lateral and transverse traction cracks which release extensional stresses and 3) Discontinuities fragmenting sliding surfaces. Some other factors that could be characterized as local (lithology, structure and topography) and as regional (high seismic activity and possibly wetter conditions during the postglacial period) were determining in favoring the steady loss of the western mountain side in the easternmost foothills of Central Precordillera.
Resumo:
Polymineralic rocks undergo grain coarsening with increasing temperature in both static and deformational environments, as long as no mineral reactions occur. The grain coarsening in such rocks is complex because the different phases influence each other, and it is this interaction that controls the rate of grain coarsening of the entire aggregate. We present a mathematical approach to investigate coupled grain coarsening using a set of microstructural parameters, including grain size and volume fraction of both second phases and matrix mineral in combination with temperature information. Based on samples from polymineralic carbonate mylonites that were deformed at different temperatures, we demonstrate how the mathematical relation can be calibrated for this natural system. Using such data sets for other lithologies, grain coarsening maps can be generated, which allow the prediction of microstructural evolution in polymineralic rocks. Such predictions are crucial for all subdisciplines in the earth sciences that require fundamental knowledge about microstructural changes and rheology of an orogen at different depths, such as structural geology, geophysics, geodynamics, and metamorphic petrology.
Resumo:
Based on the relationship Zener parameter (Z=second-phase size/second-phase volume fraction) vs. calcite grain size (dg), second-phase controlled aggregates and microstructures that are weakly affected by second-phases are discriminated. The latter are characterized by large but constant grain sizes, high calcite grain boundary fractions and crystallographic preferred orientations (CPO), while calcite grain size and calcite grain boundary fraction decrease continuously and CPO weakens with decreasing Z in second-phase controlled microstructures. These observations suggest that second-phase controlled microstructures predominantly deform via granular flow because pinning of calcite grain boundaries reduces the efficiency of dynamic recrystallization favoring mass transfer processes and grain boundary sliding. In contrast, the balance of grain size reduction and growth by dynamic recrystallization maintains a steady state grain size in microstructures that are only weakly affected by second-phases promoting a predominance of dislocation creep. With increasing temperature, the relationship between Z and dg persists but the calcite grain size increases continuously. Based on microstructures, the energy of each modifying process is calculated and its relative contribution is compared with energies of the competing processes (surface energy, dragging energy, dynamic recrystallization energy). The steady state microstructures result from a temperature-dependent energy minimization procedure of the system.
Resumo:
Grey and white carbonate mylonites were collected along thrust planes of the Helvetic Alps. They are characterised by very small grain sizes and non-random grain shape (SPO) and crystallographic preferred orientation (CPO). Presumably they deformed in the field of grain size sensitive flow by recrystallisation accommodated intracrystalline deformation in combination with granular flow. Both mylonites show a similar mean grain size, but in the grey mylonites the grain size range is larger, the grain shapes are more elongate and the dynamically recrystallised calcite grains are more often twinned. Grey mylonites have an oblique CPO, while the CPO in white mylonites is symmetric with respect to the shear plane. Combustion analysis and TEM investigations revealed that grey mylonites contain a higher amount of highly structured kerogens with particle sizes of a few tens of nanometers, which are finely dispersed at the grain boundaries. During deformation of the rock, nano-scale particles reduced the migration velocity of grain boundaries by Zener drag resulting in slower recrystallisation rates of the calcite aggregate. In the grey mylonites, more strain increments were accommodated by individual grains before they became refreshed by dynamic recrystallisation than in white mylonites, where grain boundary migration was less hindered and recrystallisation cycles were faster. Consequently, grey mylonites represent ‘deformation’ microfabrics while white mylonites are characterised by ‘recrystallisation’ microfabrics. Field geologists must utilise this different deformation behavior when applying the obliquity in CPO and SPO of the respective mylonites as reliable shear sense indicators.