990 resultados para Speech data
Resumo:
It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to determine whether there was an association between poor spoken language and atypical event-related field (ERF) responses to speech and nonspeech sounds in children with ASD (n = 14) and controls (n = 18). Data from this developmental population (ages 6-14) were analysed using a novel combination of methods to maximize the reliability of our findings while taking into consideration the heterogeneity of the ASD population. The results showed that poor spoken language scores were associated with atypical left hemisphere brain responses (200 to 400 ms) to both speech and nonspeech in the ASD group. These data support the idea that some children with ASD may have an immature auditory cortex that affects their ability to process both speech and nonspeech sounds. Their poor speech processing may impair their ability to process the speech of other people, and hence reduce their ability to learn the phonology, syntax, and semantics of their native language.
Resumo:
This study investigated the effects of word prediction and text-to-speech on the narrative composition writing skills of 6, fifth-grade Hispanic boys with specific learning disabilities (SLD). A multiple baseline design across subjects was used to explore the efficacy of word prediction and text-to-speech alone and in combination on four dependent variables: writing fluency (words per minute), syntax (T-units), spelling accuracy, and overall organization (holistic scoring rubric). Data were collected and analyzed during baseline, assistive technology interventions, and at 2-, 4-, and 6-week maintenance probes. ^ Participants were equally divided into Cohorts A and B, and two separate but related studies were conducted. Throughout all phases of the study, participants wrote narrative compositions for 15-minute sessions. During baseline, participants used word processing only. During the assistive technology intervention condition, Cohort A participants used word prediction followed by word prediction with text-to-speech. Concurrently, Cohort B participants used text-to-speech followed by text-to-speech with word prediction. ^ The results of this study indicate that word prediction alone or in combination with text-to-speech has a positive effect on the narrative writing compositions of students with SLD. Overall, participants in Cohorts A and B wrote more words, more T-units, and spelled more words correctly. A sign test indicated that these perceived effects were not likely due to chance. Additionally, the quality of writing improved as measured by holistic rubric scores. When participants in Cohort B used text-to-speech alone, with the exception of spelling accuracy, inconsequential results were observed on all dependent variables. ^ This study demonstrated that word prediction alone or in combination assists students with SLD to write longer, improved-quality, narrative compositions. These results suggest that word prediction or word prediction with text-to-speech be considered as a writing support to facilitate the production of a first draft of a narrative composition. However, caution should be given to the use of text-to-speech alone as its effectiveness has not been established. Recommendations for future research include investigating the use of these technologies in other phases of the writing process, with other student populations, and with other writing styles. Further, these technologies should be investigated while integrated into classroom composition instruction. ^
Resumo:
One of the overarching questions in the field of infant perceptual and cognitive development concerns how selective attention is organized during early development to facilitate learning. The following study examined how infants' selective attention to properties of social events (i.e., prosody of speech and facial identity) changes in real time as a function of intersensory redundancy (redundant audiovisual, nonredundant unimodal visual) and exploratory time. Intersensory redundancy refers to the spatially coordinated and temporally synchronous occurrence of information across multiple senses. Real time macro- and micro-structural change in infants' scanning patterns of dynamic faces was also examined. ^ According to the Intersensory Redundancy Hypothesis, information presented redundantly and in temporal synchrony across two or more senses recruits infants' selective attention and facilitates perceptual learning of highly salient amodal properties (properties that can be perceived across several sensory modalities such as the prosody of speech) at the expense of less salient modality specific properties. Conversely, information presented to only one sense facilitates infants' learning of modality specific properties (properties that are specific to a particular sensory modality such as facial features) at the expense of amodal properties (Bahrick & Lickliter, 2000, 2002). ^ Infants' selective attention and discrimination of prosody of speech and facial configuration was assessed in a modified visual paired comparison paradigm. In redundant audiovisual stimulation, it was predicted infants would show discrimination of prosody of speech in the early phases of exploration and facial configuration in the later phases of exploration. Conversely, in nonredundant unimodal visual stimulation, it was predicted infants would show discrimination of facial identity in the early phases of exploration and prosody of speech in the later phases of exploration. Results provided support for the first prediction and indicated that following redundant audiovisual exposure, infants showed discrimination of prosody of speech earlier in processing time than discrimination of facial identity. Data from the nonredundant unimodal visual condition provided partial support for the second prediction and indicated that infants showed discrimination of facial identity, but not prosody of speech. The dissertation study contributes to the understanding of the nature of infants' selective attention and processing of social events across exploratory time.^
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness. Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven- tions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary. Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems. To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].
Resumo:
Consensus has not been reached on safe alcohol consumption recommendations during pregnancy. The National Institutes for Care and Health Excellence (NICE) in the UK suggest that one to two drinks not more than twice per week is safe. However, the speech and language effects of even low levels of alcohol use among offspring are unknown. The aim of this study was to review systematically the evidence on studies of the effect of low to moderate levels of alcohol consumption during pregnancy (up to 70 grams of alcohol per week) compared to abstinence on speech and language outcomes in children.
Resumo:
How do infants learn word meanings? Research has established the impact of both parent and child behaviors on vocabulary development, however the processes and mechanisms underlying these relationships are still not fully understood. Much existing literature focuses on direct paths to word learning, demonstrating that parent speech and child gesture use are powerful predictors of later vocabulary. However, an additional body of research indicates that these relationships don’t always replicate, particularly when assessed in different populations, contexts, or developmental periods.
The current study examines the relationships between infant gesture, parent speech, and infant vocabulary over the course of the second year (10-22 months of age). Through the use of detailed coding of dyadic mother-child play interactions and a combination of quantitative and qualitative data analytic methods, the process of communicative development was explored. Findings reveal non-linear patterns of growth in both parent speech content and child gesture use. Analyses of contingency in dyadic interactions reveal that children are active contributors to communicative engagement through their use of gestures, shaping the type of input they receive from parents, which in turn influences child vocabulary acquisition. Recommendations for future studies and the use of nuanced methodologies to assess changes in the dynamic system of dyadic communication are discussed.
Resumo:
Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^
Resumo:
The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
Obstructive sleep apnea syndrome has a high prevalence among adults. Cephalometric variables can be a valuable method for evaluating patients with this syndrome. To correlate cephalometric data with the apnea-hypopnea sleep index. We performed a retrospective and cross-sectional study that analyzed the cephalometric data of patients followed in the Sleep Disorders Outpatient Clinic of the Discipline of Otorhinolaryngology of a university hospital, from June 2007 to May 2012. Ninety-six patients were included, 45 men, and 51 women, with a mean age of 50.3 years. A total of 11 patients had snoring, 20 had mild apnea, 26 had moderate apnea, and 39 had severe apnea. The distance from the hyoid bone to the mandibular plane was the only variable that showed a statistically significant correlation with the apnea-hypopnea index. Cephalometric variables are useful tools for the understanding of obstructive sleep apnea syndrome. The distance from the hyoid bone to the mandibular plane showed a statistically significant correlation with the apnea-hypopnea index.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.
Resumo:
To assess the completeness and reliability of the Information System on Live Births (Sinasc) data. A cross-sectional analysis of the reliability and completeness of Sinasc's data was performed using a sample of Live Birth Certificate (LBC) from 2009, related to births from Campinas, Southeast Brazil. For data analysis, hospitals were grouped according to category of service (Unified National Health System, private or both), 600 LBCs were randomly selected and the data were collected in LBC-copies through mothers and newborns' hospital records and by telephone interviews. The completeness of LBCs was evaluated, calculating the percentage of blank fields, and the LBCs agreement comparing the originals with the copies was evaluated by Kappa and intraclass correlation coefficients. The percentage of completeness of LBCs ranged from 99.8%-100%. For the most items, the agreement was excellent. However, the agreement was acceptable for marital status, maternal education and newborn infants' race/color, low for prenatal visits and presence of birth defects, and very low for the number of deceased children. The results showed that the municipality Sinasc is reliable for most of the studied variables. Investments in training of the professionals are suggested in an attempt to improve system capacity to support planning and implementation of health activities for the benefit of maternal and child population.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.