952 resultados para Spectral Difference Method
Resumo:
El tema central de investigación en esta Tesis es el estudio del comportamientodinámico de una estructura mediante modelos que describen la distribución deenergía entre los componentes de la misma y la aplicación de estos modelos parala detección de daños incipientes.Los ensayos dinámicos son un modo de extraer información sobre las propiedadesde una estructura. Si tenemos un modelo de la estructura se podría ajustar éstepara que, con determinado grado de precisión, tenga la misma respuesta que elsistema real ensayado. Después de que se produjese un daño en la estructura,la respuesta al mismo ensayo variará en cierta medida; actualizando el modelo alas nuevas condiciones podemos detectar cambios en la configuración del modeloestructural que nos condujeran a la conclusión de que en la estructura se haproducido un daño.De este modo, la detección de un daño incipiente es posible si somos capacesde distinguir una pequeña variación en los parámetros que definen el modelo. Unrégimen muy apropiado para realizar este tipo de detección es a altas frecuencias,ya que la respuesta es muy dependiente de los pequeños detalles geométricos,dado que el tamaño característico en la estructura asociado a la respuesta esdirectamente proporcional a la velocidad de propagación de las ondas acústicas enel sólido, que para una estructura dada es inalterable, e inversamente proporcionala la frecuencia de la excitación. Al mismo tiempo, esta característica de la respuestaa altas frecuencias hace que un modelo de Elementos Finitos no sea aplicable enla práctica, debido al alto coste computacional.Un modelo ampliamente utilizado en el cálculo de la respuesta de estructurasa altas frecuencias en ingeniería es el SEA (Statistical Energy Analysis). El SEAaplica el balance energético a cada componente estructural, relacionando la energíade vibración de estos con la potencia disipada por cada uno de ellos y la potenciatransmitida entre ellos, cuya suma debe ser igual a la potencia inyectada a cadacomponente estructural. Esta relación es lineal y viene caracterizada por los factoresde pérdidas. Las magnitudes que intervienen en la respuesta se consideranpromediadas en la geometría, la frecuencia y el tiempo.Actualizar el modelo SEA a datos de ensayo es, por lo tanto, calcular losfactores de pérdidas que reproduzcan la respuesta obtenida en éste. Esta actualización,si se hace de manera directa, supone la resolución de un problema inversoque tiene la característica de estar mal condicionado. En la Tesis se propone actualizarel modelo SEA, no en término de los factores de pérdidas, sino en términos deparámetros estructurales que tienen sentido físico cuando se trata de la respuestaa altas frecuencias, como son los factores de disipación de cada componente, susdensidades modales y las rigideces características de los elementos de acoplamiento.Los factores de pérdidas se calculan como función de estos parámetros. Estaformulación es desarrollada de manera original en esta Tesis y principalmente sefunda en la hipótesis de alta densidad modal, es decir, que en la respuesta participanun gran número de modos de cada componente estructural.La teoría general del método SEA, establece que el modelo es válido bajounas hipótesis sobre la naturaleza de las excitaciones externas muy restrictivas,como que éstas deben ser de tipo ruido blanco local. Este tipo de carga es difícil dereproducir en condiciones de ensayo. En la Tesis mostramos con casos prácticos queesta restricción se puede relajar y, en particular, los resultados son suficientementebuenos cuando la estructura se somete a una carga armónica en escalón.Bajo estas aproximaciones se desarrolla un algoritmo de optimización por pasosque permite actualizar un modelo SEA a un ensayo transitorio cuando la carga esde tipo armónica en escalón. Este algoritmo actualiza el modelo no solamente parauna banda de frecuencia en particular sino para diversas bandas de frecuencia demanera simultánea, con el objetivo de plantear un problema mejor condicionado.Por último, se define un índice de daño que mide el cambio en la matriz depérdidas cuando se produce un daño estructural en una localización concreta deun componente. Se simula numéricamente la respuesta de una estructura formadapor vigas donde producimos un daño en la sección de una de ellas; como se tratade un cálculo a altas frecuencias, la simulación se hace mediante el Método delos Elementos Espectrales para lo que ha sido necesario desarrollar dentro de laTesis un elemento espectral de tipo viga dañada en una sección determinada. Losresultados obtenidos permiten localizar el componente estructural en que se haproducido el daño y la sección en que éste se encuentra con determinado grado deconfianza.AbstractThe main subject under research in this Thesis is the study of the dynamic behaviourof a structure using models that describe the energy distribution betweenthe components of the structure and the applicability of these models to incipientdamage detection.Dynamic tests are a way to extract information about the properties of astructure. If we have a model of the structure, it can be updated in order toreproduce the same response as in experimental tests, within a certain degree ofaccuracy. After damage occurs, the response will change to some extent; modelupdating to the new test conditions can help to detect changes in the structuralmodel leading to the conclusión that damage has occurred.In this way incipient damage detection is possible if we are able to detect srnallvariations in the model parameters. It turns out that the high frequency regimeis highly relevant for incipient damage detection, because the response is verysensitive to small structural geometric details. The characteristic length associatedwith the response is proportional to the propagation speed of acoustic waves insidethe solid, but inversely proportional to the excitation frequency. At the same time,this fact makes the application of a Finite Element Method impractical due to thehigh computational cost.A widely used model in engineering when dealing with the high frequencyresponse is SEA (Statistical Energy Analysis). SEA applies the energy balance toeach structural component, relating their vibrational energy with the dissipatedpower and the transmitted power between the different components; their summust be equal to the input power to each of them. This relationship is linear andcharacterized by loss factors. The magnitudes considered in the response shouldbe averaged in geometry, frequency and time.SEA model updating to test data is equivalent to calculating the loss factorsthat provide a better fit to the experimental response. This is formulated as an illconditionedinverse problem. In this Thesis a new updating algorithm is proposedfor the study of the high frequency response regime in terms of parameters withphysical meaning such as the internal dissipation factors, modal densities andcharacteristic coupling stiffness. The loss factors are then calculated from theseparameters. The approach is developed entirely in this Thesis and is mainlybased on a high modal density asumption, that is to say, a large number of modescontributes to the response.General SEA theory establishes the validity of the model under the asumptionof very restrictive external excitations. These should behave as a local white noise.This kind of excitation is difficult to reproduce in an experimental environment.In this Thesis we show that in practical cases this assumption can be relaxed, inparticular, results are good enough when the structure is excited with a harmonicstep function.Under these assumptions an optimization algorithm is developed for SEAmodel updating to a transient test when external loads are harmonic step functions.This algorithm considers the response not only in a single frequency band,but also for several of them simultaneously.A damage index is defined that measures the change in the loss factor matrixwhen a damage has occurred at a certain location in the structure. The structuresconsidered in this study are built with damaged beam elements; as we are dealingwith the high frequency response, the numerical simulation is implemented witha Spectral Element Method. It has therefore been necessary to develop a spectralbeam damaged element as well. The reported results show that damage detectionis possible with this algorithm, moreover, damage location is also possible withina certain degree of accuracy.
Resumo:
Background: Several meta-analysis methods can be used to quantitatively combine the results of a group of experiments, including the weighted mean difference, statistical vote counting, the parametric response ratio and the non-parametric response ratio. The software engineering community has focused on the weighted mean difference method. However, other meta-analysis methods have distinct strengths, such as being able to be used when variances are not reported. There are as yet no guidelines to indicate which method is best for use in each case. Aim: Compile a set of rules that SE researchers can use to ascertain which aggregation method is best for use in the synthesis phase of a systematic review. Method: Monte Carlo simulation varying the number of experiments in the meta analyses, the number of subjects that they include, their variance and effect size. We empirically calculated the reliability and statistical power in each case Results: WMD is generally reliable if the variance is low, whereas its power depends on the effect size and number of subjects per meta-analysis; the reliability of RR is generally unaffected by changes in variance, but it does require more subjects than WMD to be powerful; NPRR is the most reliable method, but it is not very powerful; SVC behaves well when the effect size is moderate, but is less reliable with other effect sizes. Detailed tables of results are annexed. Conclusions: Before undertaking statistical aggregation in software engineering, it is worthwhile checking whether there is any appreciable difference in the reliability and power of the methods. If there is, software engineers should select the method that optimizes both parameters.
Resumo:
The aim of this work was to determine the nutritive value of palm kernel meal (PKM) in diets for growing rabbits. In Experiment 1, 20 New Zealand × Californian growing rabbits 50 d-old were used to determine energy, crude protein, fibre and fat digestibility of PKM. The nutritive value was estimated by the difference method using a basal diet and another diet made by substituting 200 g/kg of basal diet with PKM. Energy, crude protein, ether extract and neutral detergent fibre of PKM digestibilities were, respectively, 0.549 (±0.056, SE), 0.541 (±0.069), 0.850 (±0.048) and 0.430 (±0.101), and the digestible energy concentration was 10.9 MJ/kg (±1.03) DM. In Experiment 2, 412 rabbits were allocated at random to the two experimental diets to measure growing performance. Inclusion of 200 g PKM/kg in the diet did not affect feed or digestible energy intake but decreased slightly (by around 5%) average daily gain (P = 0.003) and feed efficiency (P < 0.001). Neither mortality nor Clostridium perfringens counts in soft faeces were affected by type of diet. Palm kernel meal can be considered a palatable source of fibre, protein and fat for rabbits and can substitute significant amounts of other fibrous ingredients in the diet without adverse effects on growth performance.
Resumo:
Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.
Resumo:
Performing three-dimensional pin-by-pin full core calculations based on an improved solution of the multi-group diffusion equation is an affordable option nowadays to compute accurate local safety parameters for light water reactors. Since a transport approximation is solved, appropriate correction factors, such as interface discontinuity factors, are required to nearly reproduce the fully heterogeneous transport solution. Calculating exact pin-by-pin discontinuity factors requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration; however, inaccurate correction factors are one major source of error in core analysis when using multi-group diffusion theory. An alternative to generate accurate pin-by-pin interface discontinuity factors is to build a functional-fitting that allows incorporating the environment dependence in the computed values. This paper suggests a methodology to consider the neighborhood effect based on the Analytic Coarse-Mesh Finite Difference method for the multi-group diffusion equation. It has been applied to both definitions of interface discontinuity factors, the one based on the Generalized Equivalence Theory and the one based on Black-Box Homogenization, and for different few energy groups structures. Conclusions are drawn over the optimal functional-fitting and demonstrative results are obtained with the multi-group pin-by-pin diffusion code COBAYA3 for representative PWR configurations.
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers
Resumo:
An automated panoramic irradiator with a 3 Ci 241Am-Be neutron source is installed in a bunker-type large room at the Universidad Politécnica de Madrid (UPM). It was recently modified and a neutron spectrometry campaign was organized to characterize the neutron fields in different measurement points along the irradiation bench. Four research groups working with different Bonner Sphere Spectrometers (BSS) and using different spectral unfolding codes took part to this exercise. INFN-LNF used a BSS formed by 9 spheres plus bare detector, with cylindrical, almost point like, 6LiI(Eu) scintillator (4 mm x 4 mm, from Ludlum); UAZ-UPM employed a similar system but with only 6 spheres plus bare detector; UAB worked with a 3He filled proportional counter at 8kPa filling pressure, cylindrical 9 mm x 10 mm (05NH1 from Eurisys) with 11 spheres configuration; and CIEMAT used 12 spheres with an spherical 3He SP9 counter (Centronic Ltd., UK) with very high sensitivity due to the large diameter (3.2 cm) and the filling pressure of the order of 228 kPa. Each group applied a different spectral unfolding method: INFN and UAB worked with FRUIT ver. 3.0 with their own response matrixes; UAZ-UPM used the BUNKIUT unfolding code with the response matrix UTA4 and CIEMAT employed the GRAVEL-MAXED-IQU package with their own response matrix. The paper shows the main results obtained in terms of neutron spectra at fixed distances from the source as well as total neutron fluence rate and ambient dose equivalent rate H*(10) determined from the spectra. The latter are compared with the readings of a common active survey-meter (LB 6411). The small differences in the results of the various groups are discussed.
Resumo:
The 2010 Haiti earthquake, occurred on January 12th at 16:53:09 local time (21:53:09 UTC) with epicentral distance of 15 km from the capital Port au Prince, MW 7.0 and 13 km hypocenter deep, was the strongest event in the area since happened in 1770. The maximum macroseismic intensity was estimated as X (MMI scale). The aim of this research is to obtain a preliminary zonation of Port-au-Prince in terms of predominant resonance periods of ground. A total of 36 short-period ambient noise records have been carried out on a grid of about 500x500m. H/V spectral ratio method (HVSR) has been applied to determine the predominant period at each point. The lowest values (<0.2s) predominate in the southern part of the city, composed by Miocene conglomerates, while highest values (> 0.45s) correspond to the center and western parts, composed of Pleistocene-Holocene alluvial deposits and anthropogenic land reclaimed from the sea. We have determined the ground VS30 structure inside National Palace garden, using simultaneous ambient noise measurements. An array made up of 6 sensors were used, with 5 of them uniformly distributed along a circumference and a sixth one placed in its centre. The records were analyzed by using the spatial autocorrelation method (SPAC). The VS 30 value obtained was 331m/sec, in good agreement with the average values obtained for this area by other authors, using prospecting techniques.
Resumo:
Since the epoch-making "memoir" of Saint-Venant in 1855 the torsion of prismatic and cilindrical bars has reduced to a mathematical problem: the calculation of an analytical function satisfying prescribed boundary values. For over one century, till the first applications of the F.E.M. to the problem, the only possibility of study in irregularly shaped domains was the beatiful, but limitated, theory of complex function analysis, several functional approaches and the finite difference method. Nevertheless in 1963 Jaswon published an interestingpaper which was nearly lost between the splendid F. E.M. boom. The method was extended by Rizzo to more complicated problems and definitively incorporated to the scientific community background through several lecture-notes of Cruse recently published, but widely circulated during past years. The work of several researches has shown the tremendous possibilities of the method which is today a recognized alternative to the well established F .E. procedure. In fact, the first comprehensive attempt to cover the method, has been recently published in textbook form. This paper is a contribution to the implementation of a difficulty which arises if the isoparametric elements concept is applicated to plane potential problems with sharp corners in the boundary domain. In previous works, these problems was avoided using two principal approximations: equating the fluxes round the corner or establishing a binode element (in fact, truncating the corner). The first approximation distortes heavily the solution in thecorner neighbourhood, and a great amount of element is neccesary to reduce its influence. The second is better suited but the price payed is increasing the size of the system of equations to be solved. In this paper an alternative formulation, consistent with the shape function chosen in the isoparametric representation, is presented. For ease of comprehension the formulation has been limited to the linear element. Nevertheless its extension to more refined elements is straight forward. Also a direct procedure for the assembling of the equations is presented in an attempt to reduce the in-core computer requirements.
Resumo:
Una evolución del método de diferencias finitas ha sido el desarrollo del método de diferencias finitas generalizadas (MDFG) que se puede aplicar a mallas irregulares o nubes de puntos. En este método se emplea una expansión en serie de Taylor junto con una aproximación por mínimos cuadrados móviles (MCM). De ese modo, las fórmulas explícitas de diferencias para nubes irregulares de puntos se pueden obtener fácilmente usando el método de Cholesky. El MDFG-MCM es un método sin malla que emplea únicamente puntos. Una contribución de esta Tesis es la aplicación del MDFG-MCM al caso de la modelización de problemas anisótropos elípticos de conductividad eléctrica incluyendo el caso de tejidos reales cuando la dirección de las fibras no es fija, sino que varía a lo largo del tejido. En esta Tesis también se muestra la extensión del método de diferencias finitas generalizadas a la solución explícita de ecuaciones parabólicas anisótropas. El método explícito incluye la formulación de un límite de estabilidad para el caso de nubes irregulares de nodos que es fácilmente calculable. Además se presenta una nueva solución analítica para una ecuación parabólica anisótropa y el MDFG-MCM explícito se aplica al caso de problemas parabólicos anisótropos de conductividad eléctrica. La evidente dificultad de realizar mediciones directas en electrocardiología ha motivado un gran interés en la simulación numérica de modelos cardiacos. La contribución más importante de esta Tesis es la aplicación de un esquema explícito con el MDFG-MCM al caso de la modelización monodominio de problemas de conductividad eléctrica. En esta Tesis presentamos un algoritmo altamente eficiente, exacto y condicionalmente estable para resolver el modelo monodominio, que describe la actividad eléctrica del corazón. El modelo consiste en una ecuación en derivadas parciales parabólica anisótropa (EDP) que está acoplada con un sistema de ecuaciones diferenciales ordinarias (EDOs) que describen las reacciones electroquímicas en las células cardiacas. El sistema resultante es difícil de resolver numéricamente debido a su complejidad. Proponemos un método basado en una separación de operadores y un método sin malla para resolver la EDP junto a un método de Runge-Kutta para resolver el sistema de EDOs de la membrana y las corrientes iónicas. ABSTRACT An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method that can be applied to irregular grids or clouds of points. In this method a Taylor series expansion is used together with a moving least squares (MLS) approximation. Then, the explicit difference formulae for irregular clouds of points can be easily obtained using a simple Cholesky method. The MLS-GFD is a mesh-free method using only points. A contribution of this Thesis is the application of the MLS-GFDM to the case of modelling elliptic anisotropic electrical conductivity problems including the case of real tissues when the fiber direction is not fixed, but varies throughout the tissue. In this Thesis the extension of the generalized finite difference method to the explicit solution of parabolic anisotropic equations is also given. The explicit method includes a stability limit formulated for the case of irregular clouds of nodes that can be easily calculated. Also a new analytical solution for homogeneous parabolic anisotropic equation has been presented and an explicit MLS- GFDM has been applied to the case of parabolic anisotropic electrical conductivity problems. The obvious difficulty of performing direct measurements in electrocardiology has motivated wide interest in the numerical simulation of cardiac models. The main contribution of this Thesis is the application of an explicit scheme based in the MLS-GFDM to the case of modelling monodomain electrical conductivity problems using operator splitting including the case of anisotropic real tissues. In this Thesis we present a highly efficient, accurate and conditionally stable algorithm to solve a monodomain model, which describes the electrical activity in the heart. The model consists of a parabolic anisotropic partial differential equation (PDE), which is coupled to systems of ordinary differential equations (ODEs) describing electrochemical reactions in the cardiac cells. The resulting system is challenging to solve numerically, because of its complexity. We propose a method based on operator splitting and a meshless method for solving the PDE together with a Runge-Kutta method for solving the system of ODE’s for the membrane and ionic currents.
Resumo:
The first steps towards developing a continuum-molecular coupled simulations techniques are presented, for the purpose of computing macroscopic systems of confined fluids. The idea is to compute the interface wall-fluid by Molecular Dynamics simulations, where Lennard-Jones potential (and others) have been employed for the molecular interactions, so the usual non slip boundary condition is not specified. Instead, a shear rate can be imposed at the wall, which allows to obtain the properties of the wall material by means of an iterative method. The remaining fluid region will be computed by a spectral hp method. We present MD simulations of a Couette flow, and the results of the developed boundary conditions from the wall fluid interaction.
Resumo:
La ecuación en derivadas parciales de advección difusión con reacción química es la base de los modelos de dispersión de contaminantes en la atmósfera, y los diferentes métodos numéricos empleados para su resolución han sido objeto de amplios estudios a lo largo de su desarrollo. En esta Tesis se presenta la implementación de un nuevo método conservativo para la resolución de la parte advectiva de la ecuación en derivadas parciales que modela la dispersión de contaminantes dentro del modelo mesoescalar de transporte químico CHIMERE. Este método está basado en una técnica de volúmenes finitos junto con una interpolación racional. La ventaja de este método es la conservación exacta de la masa transportada debido al empleo de la ley de conservación de masas. Para ello emplea una formulación de flujo basado en el cálculo de la integral ponderada dentro de cada celda definida para la discretización del espacio en el método de volúmenes finitos. Los resultados numéricos obtenidos en las simulaciones realizadas (implementando el modelo conservativo para la advección en el modelo CHIMERE) se han comparado con los datos observados de concentración de contaminantes registrados en la red de estaciones de seguimiento y medición distribuidas por la Península Ibérica. Los datos estadísticos de medición del error, la media normalizada y la media absoluta normalizada del error, presentan valores que están dentro de los rangos propuestos por la EPA para considerar el modelo preciso. Además, se introduce un nuevo método para resolver la parte advectivadifusiva de la ecuación en derivadas parciales que modeliza la dispersión de contaminantes en la atmósfera. Se ha empleado un método de diferencias finitas de alto orden para resolver la parte difusiva de la ecuación de transporte de contaminantes junto con el método racional conservativo para la parte advectiva en una y dos dimensiones. Los resultados obtenidos de la aplicación del método a diferentes situaciones incluyendo casos académicos y reales han sido comparados con la solución analítica de la ecuación de advección-difusión, demostrando que el nuevo método proporciona un resultado preciso para aproximar la solución. Por último, se ha desarrollado un modelo completo que contempla los fenómenos advectivo y difusivo con reacción química, usando los métodos anteriores junto con una técnica de diferenciación regresiva (BDF2). Esta técnica consiste en un método implícito multipaso de diferenciación regresiva de segundo orden, que nos permite resolver los problemas rígidos típicos de la química atmosférica, modelizados a través de sistemas de ecuaciones diferenciales ordinarias. Este método hace uso de la técnica iterativa Gauss- Seidel para obtener la solución de la parte implícita de la fórmula BDF2. El empleo de la técnica de Gauss-Seidel en lugar de otras técnicas comúnmente empleadas, como la iteración por el método de Newton, nos proporciona rapidez de cálculo y bajo consumo de memoria, ideal para obtener modelos operativos para la resolución de la cinética química atmosférica. ABSTRACT Extensive research has been performed to solve the atmospheric chemicaladvection- diffusion equation and different numerical methods have been proposed. This Thesis presents the implementation of an exactly conservative method for the advection equation in the European scale Eulerian chemistry transport model CHIMERE based on a rational interpolation and a finite volume algorithm. The advantage of the method is that the cell-integrated average is predicted via a flux formulation, thus the mass is exactly conserved. Numerical results are compared with a set of observation registered at some monitoring sites in Spain. The mean normalized bias and the mean normalized absolute error present values that are inside the range to consider an accurate model performance. In addition, it has been introduced a new method to solve the advectiondiffusion equation. It is based on a high-order accurate finite difference method to solve de diffusion equation together with a rational interpolation and a finite volume to solve the advection equation in one dimension and two dimensions. Numerical results obtained from solving several problems include academic and real atmospheric problems have been compared with the analytical solution of the advection-diffusion equation, showing that the new method give an efficient algorithm for solving such problems. Finally, a complete model has been developed to solve the atmospheric chemical-advection-diffusion equation, adding the conservative method for the advection equation, the high-order finite difference method for the diffusion equation and a second-order backward differentiation formula (BDF2) to solve the atmospheric chemical kinetics. The BDF2 is an implicit, second order multistep backward differentiation formula used to solve the stiff systems of ordinary differential equations (ODEs) from atmospheric chemistry. The Gauss-Seidel iteration is used for approximately solving the implicitly defined BDF solution, giving a faster tool than the more commonly used iterative modified Newton technique. This method implies low start-up costs and a low memory demand due to the use of Gauss-Seidel iteration.
Resumo:
Situado en el límite entre Ingeniería, Informática y Biología, la mecánica computacional de las neuronas aparece como un nuevo campo interdisciplinar que potencialmente puede ser capaz de abordar problemas clínicos desde una perspectiva diferente. Este campo es multiescala por naturaleza, yendo desde la nanoescala (como, por ejemplo, los dímeros de tubulina) a la macroescala (como, por ejemplo, el tejido cerebral), y tiene como objetivo abordar problemas que son complejos, y algunas veces imposibles, de estudiar con medios experimentales. La modelización computacional ha sido ampliamente empleada en aplicaciones Neurocientíficas tan diversas como el crecimiento neuronal o la propagación de los potenciales de acción compuestos. Sin embargo, en la mayoría de los enfoques de modelización hechos hasta ahora, la interacción entre la célula y el medio/estímulo que la rodea ha sido muy poco explorada. A pesar de la tremenda importancia de esa relación en algunos desafíos médicos—como, por ejemplo, lesiones traumáticas en el cerebro, cáncer, la enfermedad del Alzheimer—un puente que relacione las propiedades electrofisiológicas-químicas y mecánicas desde la escala molecular al nivel celular todavía no existe. Con ese objetivo, esta investigación propone un marco computacional multiescala particularizado para dos escenarios respresentativos: el crecimiento del axón y el acomplamiento electrofisiológicomecánico de las neuritas. En el primer caso, se explora la relación entre los constituyentes moleculares del axón durante su crecimiento y sus propiedades mecánicas resultantes, mientras que en el último, un estímulo mecánico provoca deficiencias funcionales a nivel celular como consecuencia de sus alteraciones electrofisiológicas-químicas. La modelización computacional empleada en este trabajo es el método de las diferencias finitas, y es implementada en un nuevo programa llamado Neurite. Aunque el método de los elementos finitos es también explorado en parte de esta investigación, el método de las diferencias finitas tiene la flexibilidad y versatilidad necesaria para implementar mode los biológicos, así como la simplicidad matemática para extenderlos a simulaciones a gran escala con un coste computacional bajo. Centrándose primero en el efecto de las propiedades electrofisiológicas-químicas sobre las propiedades mecánicas, una versión adaptada de Neurite es desarrollada para simular la polimerización de los microtúbulos en el crecimiento del axón y proporcionar las propiedades mecánicas como función de la ocupación de los microtúbulos. Después de calibrar el modelo de crecimiento del axón frente a resultados experimentales disponibles en la literatura, las características mecánicas pueden ser evaluadas durante la simulación. Las propiedades mecánicas del axón muestran variaciones dramáticas en la punta de éste, donde el cono de crecimiento soporta las señales químicas y mecánicas. Bansándose en el conocimiento ganado con el modelo de diferencias finitas, y con el objetivo de ir de 1D a 3D, este esquema preliminar pero de una naturaleza innovadora allana el camino a futuros estudios con el método de los elementos finitos. Centrándose finalmente en el efecto de las propiedades mecánicas sobre las propiedades electrofisiológicas- químicas, Neurite es empleado para relacionar las cargas mecánicas macroscópicas con las deformaciones y velocidades de deformación a escala microscópica, y simular la propagación de la señal eléctrica en las neuritas bajo carga mecánica. Las simulaciones fueron calibradas con resultados experimentales publicados en la literatura, proporcionando, por tanto, un modelo capaz de predecir las alteraciones de las funciones electrofisiológicas neuronales bajo cargas externas dañinas, y uniendo lesiones mecánicas con las correspondientes deficiencias funcionales. Para abordar simulaciones a gran escala, aunque otras arquitecturas avanzadas basadas en muchos núcleos integrados (MICs) fueron consideradas, los solvers explícito e implícito se implementaron en unidades de procesamiento central (CPU) y unidades de procesamiento gráfico (GPUs). Estudios de escalabilidad fueron llevados acabo para ambas implementaciones mostrando resultados prometedores para casos de simulaciones extremadamente grandes con GPUs. Esta tesis abre la vía para futuros modelos mecánicos con el objetivo de unir las propiedades electrofisiológicas-químicas con las propiedades mecánicas. El objetivo general es mejorar el conocimiento de las comunidades médicas y de bioingeniería sobre la mecánica de las neuronas y las deficiencias funcionales que aparecen de los daños producidos por traumatismos mecánicos, como lesiones traumáticas en el cerebro, o enfermedades neurodegenerativas como la enfermedad del Alzheimer. ABSTRACT Sitting at the interface between Engineering, Computer Science and Biology, Computational Neuron Mechanics appears as a new interdisciplinary field potentially able to tackle clinical problems from a new perspective. This field is multiscale by nature, ranging from the nanoscale (e.g., tubulin dimers) to the macroscale (e.g., brain tissue), and aims at tackling problems that are complex, and sometime impossible, to study through experimental means. Computational modeling has been widely used in different Neuroscience applications as diverse as neuronal growth or compound action potential propagation. However, in the majority of the modeling approaches done in this field to date, the interactions between the cell and its surrounding media/stimulus have been rarely explored. Despite of the tremendous importance of such relationship in several medical challenges—e.g., traumatic brain injury (TBI), cancer, Alzheimer’s disease (AD)—a bridge between electrophysiological-chemical and mechanical properties of neurons from the molecular scale to the cell level is still lacking. To this end, this research proposes a multiscale computational framework particularized for two representative scenarios: axon growth and electrophysiological-mechanical coupling of neurites. In the former case, the relation between the molecular constituents of the axon during its growth and its resulting mechanical properties is explored, whereas in the latter, a mechanical stimulus provokes functional deficits at cell level as a consequence of its electrophysiological-chemical alterations. The computational modeling approach chosen in this work is the finite difference method (FDM), and was implemented in a new program called Neurite. Although the finite element method (FEM) is also explored as part of this research, the FDM provides the necessary flexibility and versatility to implement biological models, as well as the mathematical simplicity to extend them to large scale simulations with a low computational cost. Focusing first on the effect of electrophysiological-chemical properties on the mechanical proper ties, an adaptation of Neurite was developed to simulate microtubule polymerization in axonal growth and provide the axon mechanical properties as a function of microtubule occupancy. After calibrating the axon growth model against experimental results available in the literature, the mechanical characteristics can be tracked during the simulation. The axon mechanical properties show dramatic variations at the tip of the axon, where the growth cone supports the chemical and mechanical signaling. Based on the knowledge gained from the FDM scheme, and in order to go from 1D to 3D, this preliminary yet novel scheme paves the road for future studies with FEM. Focusing then on the effect of mechanical properties on the electrophysiological-chemical properties, Neurite was used to relate macroscopic mechanical loading to microscopic strains and strain rates, and simulate the electrical signal propagation along neurites under mechanical loading. The simulations were calibrated against experimental results published in the literature, thus providing a model able to predict the alteration of neuronal electrophysiological function under external damaging load, and linking mechanical injuries to subsequent acute functional deficits. To undertake large scale simulations, although other state-of-the-art architectures based on many integrated cores (MICs) were considered, the explicit and implicit solvers were implemented for central processing units (CPUs) and graphics processing units (GPUs). Scalability studies were done for both implementations showing promising results for extremely large scale simulations with GPUs. This thesis opens the avenue for future mechanical modeling approaches aimed at linking electrophysiological- chemical properties to mechanical properties. Its overarching goal is to enhance the bioengineering and medical communities knowledge on neuronal mechanics and functional deficits arising from damages produced by direct mechanical insults, such as TBI, or neurodegenerative evolving illness, such as AD.
Resumo:
En este estudio se ha realizado el diseño de un receptor de una central de Torre Central de energía solar para generación directa de vapor, mediante el uso de métodos numéricos, con un perfil de potencia incidente variable longitudinal y transversalmente. Para ello se ha dividido la geometría del receptor según el método de diferencias finitas, y se ha procedido a resolver las ecuaciones del balance de energía. Una vez resuelto el sistema de ecuaciones se dispone de la distribución de temperaturas en el receptor y se puede proceder a analizar los resultados así como a calcular otros datos de interés. ABSTRACT In this study it has been made a Central Receiver Solar Thermal Power Plant’s Receiver design for direct steam production, by using numerical methods, with a variable longitudinally and transversely income solar power profile. With this propose, the receiver’s geometry has been divided using the finite difference method, and the energy balance equations have been solved. Once the equations system has been solved, the receiver´s temperature distribution is known, and you can analyze the results as well as calculate other interesting data.