937 resultados para Solanum lycopersicum L.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) are unable to synthesize the linear tetrapyrrole chromophore of phytochrome, resulting in plants with a yellow-green phenotype. To understand the basis of this phenotype, we investigated the consequences of the au and yg-2 mutations on tetrapyrrole metabolism. Dark-grown seedlings of both mutants have reduced levels of protochlorophyllide (Pchlide) due to an inhibition of Pchlide synthesis. Feeding experiments with the tetrapyrrole precursor 5-aminolevulinic acid (ALA) demonstrate that the pathway between ALA and Pchlide is intact in au and yg-2 and suggest that the reduction in Pchlide is a result of the inhibition of ALA synthesis. This inhibition was independent of any deficiency in seed phytochrome, and experiments using an iron chelator to block heme synthesis demonstrated that both mutations inhibited the degradation of the physiologically active heme pool, suggesting that the reduction in Pchlide synthesis is a consequence of feedback inhibition by heme. We discuss the significance of these results in understanding the chlorophyll-deficient phenotype of the au and yg-2 mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology is a multidisciplinary science that is having a boom today, providing new products with attractive physicochemical properties for many applications. In agri/feed/food sector, nanotechnology offers great opportunities for obtaining products and innovative applications for agriculture and livestock, water treatment and the production, processing, storage and packaging of food. To this end, a wide variety of nanomaterials, ranging from metals and inorganic metal oxides to organic nanomaterials carrying bioactive ingredients are applied. This review shows an overview of current and future applications of nanotechnology in the food industry. Food additives and materials in contact with food are now the main applications, while it is expected that in the future are in the field of nano-encapsulated and nanocomposites in applications as novel foods, additives, biocides, pesticides and materials food contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green grams (Phaseolus aures L.) and tomato (Solanum lycopersicum L) are widely grown in the vertisols of the Mwea Irrigation Scheme alongside the rice fields. Green grams can fix nitrogen (biological nitrogen fixation) and are grown for its highly nutritious and curative seeds while tomatoes are grown for its fruit rich in fibres, minerals and vitamins. The two can be prepared separately or together in a variety of ways including raw salads and/or cooked/fried. They together form significant delicacies consumed with rice which is the major cash crop grown in the black cotton soils. The crops can grow well in warm conditions but tomato is fairly adaptable except under excessive humidity and temperatures that reduce yields. Socio-economic prioritization by the farming community and on-farm demonstrations of soil management options were instituted to demonstrate enhanced green gram and tomato production in vertisol soils of lower parts of Kirinyaga County (Mwea East and Mwea West districts). Drainage management was recognized by the farming community as the best option although a reduced number of farmers used drainage and furrows/ridges, manure, fertilizer and shifting options with reducing order of importance. Unavailability of labour and/or financial cost for instituting these management options were indicated as major hindrances to adopt the yield enhancing options. Labour force was contributed to mainly by the family alongside hiring (64.2%) although 28% and 5.2% respectively used hired or family labour alone. The female role in farming activities dominated while the male role was minimal especially at weeding. The youth role remained excessively insignificant and altogether absent at marketing. Despite the need for labour at earlier activities (especially when management options needed to be instituted) it was at the marketing stage that this force was directed. Soils were considered infertile by 60% but 40% indicated that their farms had adequate fertility. Analysis showed that ridging and application of farm yard manure and fertilizer improved fertility, crop growth and income considerably. Phosphate and zinc enhancement reduced alkalinity and sodicity. Green gram and tomato yields increased under ridges and farm yard manure application by 17-25% which significantly enhanced household income.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional-structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length: width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is 'ideal' in a given environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tomato (Solanum lycopersicum L.) is an important vegetable crop and often cultivated in regions exposed to salinity and high temperatures (HT) which change plant architecture, decrease canopy light interception and disturb physiological functions. However, the long-term effects of salinity and HT combination (S+HT) on plant growth are still unclear. A dynamic functional-structural plant model (FSPM) of tomato was parameterized and evaluated for different levels of S+HT combinations. The evaluated model was used to quantify the contributions of morphological changes (architectural effects) and physiological disturbances (non-architectural effects) on the reduction of shoot dry mass under S+HT. The model predicted architectural variables with high accuracy (>85%), which ensured the reliability of the model analyses. HT enhanced architectural effects but reduced non-architectural effects of salinity on dry mass production. The stronger architectural effects of salinity under HT could not be counterbalanced by the smaller non-architectural effects. Therefore, long-term influences of HT on shoot dry mass under salinity were negative at the whole plant level. Our model analysis highlights the importance of plant architecture at canopy level in studying the plant responses to the environments and shows the merits of dynamic FSPMs as heuristic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mosca blanca ( Bemisia tabaci, Genn) y los Geminivirus son los principales agentes de daño causantes de problemas fitosanitarios severos para los productores de tomate (Solanum tuberosum L = Lycopersicum esculentum, Mill), en el municipio de Tisma, Masaya. Esta plaga provoca importantes pérdidas económicas, disminuyendo así los rendimientos al afectar la calidad de los frutos lo cual incurre en mayores costos de producción. En base a esta problemática en el municipio de Tisma se realizó un estudio en el período comprendido entre los meses de Noviembre 2010 a Enero 2011, con el objetivo de evaluar insecticidas botánicos y químicos contra el complejo mosca blanca-Geminivirus. Los productos evaluados fueron: Engeo, Imidacloprid, Crisantemo, Madero Negro, Chile+Ajo+Jabón. Las variables evaluadas fueron: número de mosca blanca por planta, incidencia del daño de virosis por planta, severidad del daño de virosis por planta, otros organismos plagas asociados al cultivo del tomate como: áfidos (Aphis gossypii) por planta, ( Halticus sp ) por planta y minador de la hoja ( Liriomyza sp ) por planta. De los tratamientos evaluados, el menor promedio de moscas blancas por planta lo presentó el tratamiento Imidacloprid seguido de Crisantemo. El menor porcentaje de incidencia y severidad lo presentó el tratamiento Imidacloprid en comparación con los demás tratamientos evaluados. El tratamiento Madero Negro resultó ser mas efectivo para el control de Halticus sp y Liriomyza sp y Engeo el mejor contra Aphis gossypii. El análisis económico realizado determinó que los tratamientos que presentaron los mejores rendimientos fueron Crisantemo con 32,578 kg/ha, seguido por Engeo con 31,750 kg/ha y Chile+Ajo+Jabón que obtuvo 30,625 kg/ha. Crisantemo presentó el mayor beneficio neto con 7,546.90 US$/ha seguido por Engeo 7,254.58 US$/ha. En el análisis de la tasa de retorno marginal resultó que el tratamiento Engeo es el que obtuvo la mejor tasa de retorno marginal con 8,671.80 % es decir 86.71 US$ por cada dólar invertido.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural protection against pests. Due to breeding, glycoalkaloid profile of the plant is affected. In addition, the starch properties in potato tubers can be affected as a result of breeding, because the crystalline properties are determined by the botanical source of the starch. Starch content and composition affect the texture of cooked and processed potatoes. In order to determine glycoalkaloid contents in Solanum species, simultaneous separation of glycoalkaloids and aglycones using reversed-phase high-performance liquid chromatography (HPLC) was developed. Clean-up of foliage samples was improved using a silica-based strong cation exchanger instead of octadecyl phases in solid-phase extraction. Glycoalkaloids alpha-solanine and alpha-chaconine were detected in potato tubers of cvs. Satu and Sini. The total glycoalkaloid concentration of non-peeled and immature tubers was at an acceptable level (under 20 mg/100 g of FW) in the cv. Satu, whereas concentration in cv. Sini was 23 mg/100 g FW. Solanum species (S. tuberosum, S. brevidens, S. acaule, and S. commersonii) and interspecific somatic hybrids (brd + tbr, acl + tbr, cmm + tbr) were analyzed for their glycoalkaloid contents using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The concentrations in the tubers of the brd + tbr and acl + tbr hybrids remained under 20 mg/100 g FW. Glycoalkaloid concentration in the foliage of the Solanum species was between 110 mg and 890 mg/100 g FW. However, the concentration in the foliage of S. acaule was as low as 26 mg/100 g FW. The total concentrations of brd + tbr, acl + tbr, and cmm + tbr hybrid foliages were 88 mg, 180 mg, and 685 mg/100 g FW, respectively. Glycoalkaloids of both parental plants as well as new combinations of aglycones and saccharides were detected in somatic hybrids. The hybrids contained mainly spirosolanes, and glycoalkaloid structures having no 5,6-double bond in the aglycone. Based on these results, the glycoalkaloid profiles of the hybrids may represent a safer and more beneficial spectrum of glycoalkaloids than that found in currently cultivated varieties. Starch nanostructure of three different cultivars (Satu, Saturna, and Lady Rosetta), a wild species S. acaule, and interspecific somatic hybrids were examined by wide-angle and small-angle X-ray scattering (WAXS, SAXS). For the first time, the measurements were conducted on fresh potato tuber samples. Crystallinity of starch, average crystallite size, and lamellar distance were determined from the X-ray patterns. No differences in the starch nanostructure between the three different cultivars were detected. However, tuber immaturity was detected by X-ray scattering methods when large numbers of immature and mature samples were measured and the results were compared. The present study shows that no significant changes occurred in the nanostructures of starches resulting from hybridizations of potato cultivars.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As solanáceas são um grupo de plantas de elevado interesse econômico. Fungos do gênero Colletotrichum encontram-se dentre os principais patógenos das solanáceas. Os objetivos deste trabalho foram identificar isolados de Colletotrichum, coletados em hospedeiras solanáceas, ao nível de espécie por meio de caracteres morfo³gicos bem como estabelecer a espécie predominante em solanáceas. Quarenta e cinco isolados foram obtidos de várias espécies foram observados em microscópio óptico para determinar o tamanho e forma de seus conídios. Com base em caracteres morfo³gicos, observou-se uma prevaªncia de C. gloeosporioides em relação a C. acutatum entre a população de isolados avaliada. Houve diferença entre medidas de conídios dos isolados, porém uma relação com o formato dos mesmos não pôde ser encontrada. A morfologia pode ser utilizada para distinção de espécies de forma preliminar. No entanto, para se ter mais confiança na identificação das mesmas, estudos complementares utilizando marcadores moleculares são necessários.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hidroponia é uma técnica poderosa na utilização eficiente dos recursos agrícolas, pois permite um ganho quer na produtividade, quer na qualidade do fruto. Atualmente os sistemas hidropónicos utilizados em plantas de médio porte não são os mais adequados, sendo esta uma área a explorar. Neste trabalho criou-se um novo sistema hidropónico (Deep Large Flow Technique- DLFT) para aplicação a plantas de médio porte e avaliou-se o seu impacto no crescimento, produtividade, biomassa e qualidade do tomate cereja (Solanum lycopersicum var. Moscatel RZ). O sistema de cultivo tradicional (solo) e semi-hidropónico (suporte com fibra de coco) serviram como base de comparação. Observou-se que após 31 dias as plantas cultivadas no novo sistema hidropónico obtiveram um crescimento acentuado, apresentando 3x mais frutos. Em termos de produtividade, os sistemas hidropónicos foram iguais, sendo o sistema tradicional 4x inferior. O total de biomassa foi significativamente maior no novo sistema hidropónico, com mais 20% e 88% que o sistema semi-hidropónico e tradicional, respetivamente. As plantas produzidas no sistema DLFT apresentaram frutos com qualidade superior, com um rácio de monossacarídeos/acidez de 6,6 mg/g. O conteúdo total de ácidos gordos nos frutos cultivados com este sistema foi 39% e 44% superior aos do semihidropónico e do tradicional. Contrariamente, o conteúdo de flavonóides foi inferior nos frutos cultivados com o novo sistema hidropónico, tendo os frutos do sistema tradicional e do sistema semi-hidropónico 40% e 10% maior teor desta família de compostos. Os resultados obtidos neste estudo demonstram que a utilização do novo sistema hidropónico na produção de plantas de médio porte, aumenta o crescimento, a acumulação de biomassa e a qualidade do fruto. Assim, permite ao produtor reduzir os custos, rentabilizar a produção (menor tempo de produção), valorizar a biomassa da planta e aumentar a qualidade do produto. Também, através dos teores de carotenóides, ácidos gordos e polifenóis poderá inferir-se que ocorreu um menor impato dos stressses abióticos subjacentes aos sistemas nas plantas produzidas pelo sistema DLFT.