844 resultados para Soil management - Victoria
Resumo:
To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.
Resumo:
En las instituciones hospitalarias es fundamental el tema relacionado con los medicamentos y dispositivos médicos para la atención del paciente, por lo tanto el mecanismo de adquisición y disponibilidad de éstos productos, ha llevado a la participación masiva de operadores logísticos (Outsoursing) interviniendo áreas de la cadena de suministros, desde el punto de fabricación con el producto terminado hasta la dispensación del medicamento o dispositivo médico, para que ser usado o administrado al paciente. Los operadores logísticos han emprendido una búsqueda de soluciones por medio de diferentes metodologías y estrategias que permitan entregar a tiempo en las farmacias hospitalarias, conservando las propiedades físicas y químicas de los medicamentos y dispositivos médicos, garantizando así la calidad de los productos. En ésta tesis se plantea una nueva alternativa de gestión de medicamentos y dispositivos médicos en un operador logístico de productos farmacéuticos a través de la teoría de restricciones (TOC), para emprender acciones que permitan analizar el sistema bajo esta metodología, intervenir de manera oportuna, impactar y estimular al personal a trabajar en la búsqueda del mejoramiento , aumentando a su vez la velocidad del flujo de operación en toda la cadena de suministros, basada no en el mejoramiento de los óptimos locales o de los subprocesos sino en la identificación de la verdadera restricción del sistema, permitiendo realizar un análisis más a fondo encontrando el conflicto raíz para mejorar el sistema a nivel global.
Resumo:
The effects of chlorpyrifos on aquatic systems are well documented. However, the consequences of the pesticide on soil food webs are poorly understood. In this field study, we hypothesised that the addition of a soil insecticide to an area of upland grassland would impact spider and Collembola communities by decreasing numbers of spiders, consequently, causing an increase in detritivore numbers and diversity. Chlorpyrifos was added to plots on an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps (activity density) and identified to species. Twelve species of Collembola were identified from the insecticide-treated and control plots. Species diversity, richness and evenness were all reduced in the chlorpyrifos plots, although the total number of Collembola increased ten-fold despite the abundance of some spider species being reduced. The dominant collembolan in the insecticide-treated plots was Ceratophysella denticulata, accounting for over 95% of the population. Forty-three species of spider were identified. There were a reduced number of spiders in insecticide-treated plots due mainly to a lower number of the linyphiid, Tiso vagans. However, there was no significant difference in spider diversity between the control and insecticide treatments. We discuss possible explanations for the increase in abundance of one collembolan species in response to chlorpyrifos and the consequences of this. The study emphasises the importance of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production. It also highlights the need for identification of soil invertebrates to an 'appropriate' taxonomic level for biodiversity estimates. (C) 2007 Elsevier GrnbH. All rights reserved.
Resumo:
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.
Resumo:
Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.
Resumo:
Wine production is largely governed by atmospheric conditions, such as air temperature and precipitation, together with soil management and viticultural/enological practices. Therefore, anthropogenic climate change is likely to have important impacts on the winemaking sector worldwide. An important winemaking region is the Portuguese Douro Valley, which is known by its world-famous Port Wine. The identification of robust relationships between atmospheric factors and wine parameters is of great relevance for the region. A multivariate linear regression analysis of a long wine production series (1932–2010) reveals that high rainfall and cool temperatures during budburst, shoot and inflorescence development (February-March) and warm temperatures during flowering and berry development (May) are generally favourable to high production. The probabilities of occurrence of three production categories (low, normal and high) are also modelled using multinomial logistic regression. Results show that both statistical models are valuable tools for predicting the production in a given year with a lead time of 3–4 months prior to harvest. These statistical models are applied to an ensemble of 16 regional climate model experiments following the SRES A1B scenario to estimate possible future changes. Wine production is projected to increase by about 10 % by the end of the 21st century, while the occurrence of high production years is expected to increase from 25 % to over 60 %. Nevertheless, further model development will be needed to include other aspects that may shape production in the future. In particular, the rising heat stress and/or changes in ripening conditions could limit the projected production increase in future decades.
Resumo:
Earthworms are significant ecosystem engineers and are an important component of the diet of many vertebrates and invertebrates, so the ability to predict their distribution and abundance would have wide application in ecology, conservation and land management. Earthworm viability is known to be affected by the availability and quality of food resources, soil water conditions and temperature, but has not yet been modelled mechanistically to link effects on individuals to field population responses. Here we present a novel model capable of predicting the effects of land management and environmental conditions on the distribution and abundance of Aporrectodea caliginosa, the dominant earthworm species in agroecosystems. Our process-based approach uses individual based modelling (IBM), in which each individual has its own energy budget. Individual earthworm energy budgets follow established principles of physiological ecology and are parameterised for A. caliginosa from experimental measurements under optimal conditions. Under suboptimal conditions (e.g. food limitation, low soil temperatures and water contents) reproduction is prioritised over growth. Good model agreement to independent laboratory data on individual cocoon production and growth of body mass, under variable feeding and temperature conditions support our representation of A. caliginosa physiology through energy budgets. Our mechanistic model is able to accurately predict A. caliginosa distribution and abundance in spatially heterogeneous soil profiles representative of field study conditions. Essential here is the explicit modelling of earthworm behaviour in the soil profile. Local earthworm movement responds to a trade-off between food availability and soil water conditions, and this determines the spatiotemporal distribution of the population in the soil profile. Importantly, multiple environmental variables can be manipulated simultaneously in the model to explore earthworm population exposure and effects to combinations of stressors. Potential applications include prediction of the population-level effects of pesticides and changes in soil management e.g. conservation tillage and climate change.
Resumo:
Brazilian Campos grasslands are rich in species and the maintenance of its diversity and physiognomy is dependent on disturbance (e.g. fire and grazing) Nevertheless, studies about fire intensity and severity are inexistent. The present paper describes fire parameters, using 14 experimental burn plots in southern Brazil (30 degrees 02` to 30 degrees 04`S, and 51 degrees 06` to 51 degrees 09`W. 311masl). Two sites under different fire histories were chosen: frequently burned and excluded since six years. Experimental burning was performed during summer (2006-2007), when most burning takes place in these grasslands. The following parameters were measured: air temperature and moisture, vegetation height, wind speed, fuel (fine, coarse), fuel moisture, fire temperatures (soil level and at 50cm), ash, residuals, flame freight, fire duration: burning efficiency and fire intensity were later calculated. Fuel load varied from 0.39 to 1.44kg.m(-2). and correlated positively with both fire temperature and fire intensity. Fire temperatures ranged 47 to 537.5 degrees C. being higher in the excluded site Fire intensity was low compared to grassland elsewhere (36 5-319.5kW.m(-1)), differing significantly between sties Fine fuel was the variable that best explained fire intensity. The results on fire intensity and severity in Campos grasslands can be considered a pilot study, since plots were very small. However the data provided can help other researchers to get permission for experimentation using larger plots The results provide support for further studies about the effects of fire on grassland vegetation and for studies involving fire models and fire risk prediction
Resumo:
O objetivo deste experimento, realizado na cultura da banana (Musa spp.) no Vale do Ribeira, no município de Registro-SP, foi fazer um cadastramento fitossociológico das espécies de plantas daninhas sob duas formas de manejo do solo. A amostragem das espécies daninhas foi feita em duas áreas distintas de manejo, sendo uma com a cultura implantada em área de várzea drenada a 7 m de altitude e a outra com a bananicultura em área de sequeiro a 16 m de altitude. Na amostragem de um hectare, utilizou-se o método do quadrado inventário para cálculo de frequência, frequência relativa, densidade, densidade relativa, abundância, abundância relativa, índice de valor de importância e índice de importância relativa. em ambas as áreas foram identificadas 10 famílias, distribuídas em 18 gêneros e 21 espécies. Na área de várzea drenada, 38% das famílias identificadas são monocotiledôneas e 62% dicotiledôneas, num total de 15 espécies, distribuídas em nove famílias. Na área de cultivo em sistema de sequeiro, foram identificados 50% de famílias monocotiledôneas e 50% de dicotiledôneas, num total de 11 espécies, distribuídas em seis famílias. As famílias com maior representatividade foram Poaceae, com sete espécies, seguida de Asteraceae, com três. Com o estudo realizado, verificou-se ainda grande diversidade de espécies nas áreas selecionadas.
Resumo:
O objetivo do presente trabalho foi avaliar a variabilidade espacial de atributos de Latossolos sob cultivo de cana-de-açúcar na região de Jaboticabal (SP). Foram feitas amostragens do solo a intervalos regulares de 50 m, em uma área de 90 ha, nas profundidades de 0,00-0,20 e 0,60-0,80 m para determinação de pH, CTC, V % e teores de matéria orgânica, P, K+, Ca2+, Mg2+, H + Al e argila. Os dados foram submetidos às análises: estatística descritiva, geoestatística e interpolação por krigagem. Os alcances de dependência espacial para os atributos químicos do solo e teores de argila na camada de 0,60-0,80 m de profundidade foram menores, quando comparados àqueles referentes à camada de 0,00-0,20 m. Estes resultados demonstraram maior descontinuidade na distribuição espacial dos atributos do solo na camada de 0,60-0,80 m de profundidade dos Latossolos, indicando que essa classe de solos não apresentou homogeneidade de seus atributos como conceituadamente a ela foi atribuída. O manejo no solo alterou a dependência espacial dos atributos do solo na camada superficial de forma a diminuir a variabilidade espacial dos atributos químicos do solo em relação à camada mais profunda. A investigação da variabilidade espacial de atributos químicos e do teor de argila da camada superficial e subsuperficial dos solos proporcionou condições para a definição de zonas homogêneas de manejo, o que permite a adoção do sistema de agricultura de precisão.
Resumo:
Estudos regionais mais detalhados, utilizando modelos de paisagem e geoestatística, têm demonstrado que, em áreas consideradas homogêneas, sob uma única classe de solo, existe dependência espacial de atributos granulométricos. Visando a avaliar a variabilidade espacial de atributos granulométricos em Latossolo Vermelho eutroférrico, foram feitas amostragens do solo em intervalos regulares de 50 m, em forma de malha, totalizando 306 pontos de amostragem. Foram coletadas amostras nas profundidades de 0-0,2 m e 0,6-0,8 m para a determinação da argila, silte, areia total (AT), areia grossa (AG), areia média (AM), areia fina (AF) e areia muito fina (AMF). Os dados foram submetidos à análise estatística descritiva, geoestatística e interpolação por krigagem. Os valores do coeficiente de variação apresentaram-se baixos para argila, médios para silte, AT, AF, AM e AMF e altos para AG. Observou-se ocorrência de dependência espacial para todas as variáveis com grau moderado de dependência espacial, com os maiores alcances ocorrendo na profundidade de 0-0,2 m. Os latossolos, apesar de serem homogêneos, mesmo em áreas de mesma classe de solo e manejo, apresentaram variabilidade diferenciada para os atributos granulométricos.
Resumo:
O nitrogênio é o nutriente exigido em maior quantidade pela cultura do milho, sendo o que mais frequentemente limita a produtividade de grãos. O objetivo do trabalho foi avaliar, em área com vinte anos (1985-2005) de estudo de sistemas de manejo de solo, na Universidade Estadual Paulista, Campus de Botucatu (SP), a resposta do milho à produtividade, características agronômicas e eficiência de uso de nitrogênio (N), em função da adubação nitrogenada em cobertura, nos sistemas de preparo convencional e plantio direto. O delineamento experimental utilizado foi o de blocos casualizados, em esquema de parcelas subdivididas, com quatro repetições. As parcelas foram representadas por preparo convencional do solo e plantio direto e as subparcelas por doses de adubação nitrogenada em cobertura (0 kg ha-1, 40 kg ha-1, 80 kg ha-1, 120 kg ha-1 e 160 kg ha-1). A adubação nitrogenada de cobertura promoveu acréscimos significativos nas características agronômicas e nutricionais do milho, com a produtividade máxima de grãos obtida com 151 kg ha-1 de N. Nas doses de 90 kg ha-1 e 145 kg ha-1 de N em cobertura, os valores da eficiência agronômica e de recuperação foram semelhantes, para o preparo convencional do solo e plantio direto, respectivamente. As produtividades de grãos e as características agronômicas e nutricionais do milho não foram afetadas pelo tipo de preparo do solo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A compactação do solo tem sido fator físico limitante ao crescimento das plantas. Este trabalho objetivou avaliar a produção de soja (Glycine max cv. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 48) em razão do conteúdo de água e da compactação do solo. Usou-se o delineamento inteiramente casualizado, em esquema fatorial 4x2, ou seja, quatro níveis de resistência à penetração (entre 0,27 e 4,32 MPa) e dois níveis de retenção de água pelo solo (0,05 e 0,01 MPa). Foram utilizadas amostras de Latossolo Vermelho textura média (LVd) e Latossolo Vermelho textura argilosa (LVef), coletadas na profundidade de 020 cm, passadas em peneira de 0,4 cm e compactadas em camadas de 3 cm, em vasos de 20 cm de altura e 25 cm de diâmetro (9,82 L). Os níveis de resistência à penetração foram determinados com o penetrômetro de anel dinamométrico. O nível crítico de resistência do solo à penetração, em relação à produção de grãos, foi de 1,66 e 2,22 MPa, no LVd, e 3,05 e 2,81 MPa, no LVef, para o conteúdo de água retida na tensão de 0,05 e 0,01 MPa, respectivamente. A maior produção de grãos foi obtida na tensão de 0,01 MPa. A produção de grãos de soja é afetada em níveis críticos de resistência do solo à penetração superiores a 2 MPa em latossolos com conteúdo de água retida na tensão de 0,01 MPa.
Resumo:
O presente trabalho teve por objetivo avaliar o efeito da subsolagem e da adubação verde nas propriedades físicas de um Latossolo Vermelho distrófico típico, cultivado com citros (laranjeira Valência). Os tratamentos empregados foram: manejo mecânico das plantas invasoras com roçadora (Testemunha); subsolagem em um lado da planta na entrecopa; subsolagem nos dois lados da planta na entrecopa, e semeadura direta de Crotalaria spectabilis na entrecopa. As propriedades físicas do solo avaliadas foram: porosidade total, macroporosidade, microporosidade, densidade, resistência mecânica à penetração vertical e condutividade hidráulica. Na avaliação efetuada na safra 2001-2002, obtiveram-se os maiores valores de densidade do solo e resistência do solo à penetração vertical, e os menores valores de macroporos e condutividade hidráulica do solo nas entrecopas com e sem tráfego no pomar, em relação à região da copa, principalmente na camada de 0,0-0,2 m de profundidade. Os tratamentos aplicados não surtiram efeitos positivos significativos nas propriedades físicas do solo.