990 resultados para Single lung ventilation
Resumo:
Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundoplication has been commonly performed in neurologically impaired and normal children with complicated gastroesophageal reflux disease. The relationship between gastroesophageal reflux disease and respiratory diseases is still unclear. We aimed to compare results of open and laparoscopic procedures, as well as the impact of fundoplication over digestive and respiratory symptoms. From January 2000 to June 2007, 151 children underwent Nissen fundoplication. Data were prospectively collected regarding age at surgery, presence of neurologic handicap, symptoms related to reflux (digestive or respiratory, including recurrent lung infections and reactive airways disease), surgical approach, concomitant procedures, complications, and results. Mean age was 6 years and 9 months. Eighty-two children (54.3%) had neurological handicaps. The surgical approach was laparoscopy in 118 cases and laparotomy in 33. Dysphagia occurred in 23 patients submitted to laparoscopic and none to open procedure (P = 0.01). A total of 86.6% of patients with digestive symptoms had complete resolution or significant improvement of the problems after the surgery. A total of 62.2% of children with recurrent lung infections showed any reduction in the frequency of pneumonias. Only 45.2% of patients with reactive airway disease had any relief from bronchospasm episodes after fundoplication. The comparisons demonstrated that Nissen fundoplication was more effective for the resolution of digestive symptoms than to respiratory manifestations (P = 0.04). Open or laparoscopic fundoplication are safe procedures with acceptable complication indices and the results of the surgery are better for digestive than for respiratory symptoms.
Resumo:
Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa(O2)), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa(O2). PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI). We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH(2)O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH(2)O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH(2)O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH(2)O (S10/20). S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40. The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.
Resumo:
Introduction The protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi. Methods Seventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively). Results CLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours. Conclusions In an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.
Resumo:
Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.
Resumo:
Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.
Resumo:
Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)
Resumo:
Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.
Resumo:
Background. The functional haemodynamic variables pulse pressure variation (PPV), stroke volume variation (SVV), and systolic pressure variation (SPV) are widely used to assess haemodynamic status. However, it is not known how these perform during acute lung injury (ALI). This study evaluated the effects of different ventilatory strategies on haemodynamic parameters in pigs with ALI during normovolaemia and hypovolaemia. Methods. Eight anaesthetized Agroceres pigs [40 (1.9) kg] were instrumented with pulmonary artery, PiCCO, and arterial catheters and ventilated. Three ventilatory settings were randomly assigned for 10 min each: tidal volume (VT) 15 ml kg(-1) and PEEP 5 cm H(2)O, VT 8 ml kg(-1) and PEEP 13 cm H(2)O, or VT 6 ml kg(-1) and PEEP 13 cm H(2)O. Data were collected at each setting at baseline, after ALI (lung lavage+Tween 1.5%), and ALI with hypovolaemia (haemorrhage to 30% of estimated blood volume). Results. At baseline, high VT increased PPV, SVV, and SPV (P < 0.05 for all). During ALI, high VT significantly increased PPV and SVV [(P = 0.002 and P = 0.008) respectively.]. After ALI with hypovolaemia, ventilation at VT 6 ml kg(-1) and PEEP 13 cm H(2)O decreased the accuracy of functional haemodynamic variables to predict hypovolaemia, with the exception of PPV (area under the curve 0.875). The parameters obtained by PiCCO were less influenced by ventilatory changes. Conclusions. VT is the ventilatory parameter which influences functional haemodynamics the most. During ventilation with low VT and high PEEP, most functional variables are less able to accurately predict hypovolaemia secondary to haemorrhage, with the exception of PPV.
Resumo:
Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using (68)Ga-labeled pseudogas or ""Gallgas"" with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.
Resumo:
To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system. Experimental study. Twenty-seven male New Zealand rabbits. After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH(2)O, flow 3 L/min, FiO(2) 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH(2)O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH(2)O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH(2)O, PEEP 12 cmH(2)O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV. Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV. Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups. Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.
Resumo:
Background: To evaluate the cardiopulmonary effects of positive end-expiratory pressure (PEEP) equalization to intra-abdominal pressure (IAP) in an experimental model of intra-abdominal hypertension (IAH) and acute lung injury (ALI). Methods: Eight anesthetized pigs were submitted to IAH of 20 mm Hg with a carbon dioxide insufflator for 30 minutes and then submitted to lung lavage with saline and Tween (2.5%). Pressure x volume curves of the respiratory system were performed by a low flow method during IAH and ALI, and PEEP was subsequently adjusted to 27 cm center dot H(2)O for 30 minutes. Results: IAH decreases pulmonary and respiratory system static compliances and increases airway resistance, alveolar-arterial oxygen gradient, and respiratory dead space. The presence of concomitant ALI exacerbates these findings. PEEP identical to AP moderately improved oxygenation and respiratory mechanics; however, an important decline in stroke index and right ventricle ejection fraction was observed. Conclusions: Simultaneous IAH and ALI produce important impairments in the respiratory physiology. PEEP equalization to AP may improve the respiratory performance, nevertheless with a secondary hemodynamic derangement.
Resumo:
Objective: To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Design: Experimental bench study. Setting: The respiratory care laboratory of a university-affiliated teaching hospital. Subject: A computerized mechanical lung model, the IngMar ASL5000. Interventions: Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Measurements and main results: Performance varied widely among ventilators. Mean inspiratory trigger time was < 100 ms for only half of the tested ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Conclusions: Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.
Resumo:
Positive end-expiratory pressure (PEEP) and sustained inspiratory insufflations (SI) during acute lung injury (ALI) are suggested to improve oxygenation and respiratory mechanics. We aimed to investigate the hemodynamic effects of PEEP with and without alveolar recruiting maneuver in a mild ALI model induced by inhalation of hydrochloric acid. Thirty-two pigs were randomly allocated into four groups (Control-PEEP, Control-SI, ALI-PEEP and ALI-SI). ALI was induced by intratracheal instillation of hydrochloric acid. PEEP values were progressively increased and decreased from 5, 10, 15 and 20 cmH(2)O in all groups. Three SIs maneuvers of 30 cmH(2)O for 20 s were applied to the assignable groups between each PEEP level. Transesophageal echocardiography (TEE), global hemodynamics, oxygenation indexes and gastric tonometry were measured 5 min after the maneuvers had been concluded and at each established value of PEEP (5, 10, 15 and 20 cmH(2)O). The cardiac index, ejection fraction and end-diastolic volume of right ventricle were significantly (P < 0.001) decreased with PEEP in both Control and ALI groups. Left ventricle echocardiography showed a significant decrease in end-diastolic volume at 20 cmH(2)O of PEEP (P < 0.001). SIs did not exert any significant hemodynamic effects either early (after 5 min) or late (after 3 h). In a mild ALI model induced by inhalation of hydrochloric acid, significant hemodynamic impairment characterized by cardiac function deterioration occurred during PEEP increment, but SI, probably due to low applied values (30 cmH(2)O), did not exert further negative hemodynamic effects. PEEP should be used cautiously in ALI caused by acid gastric content inhalation.