963 resultados para Single layer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the optical properties of single-layer TiO2 films deposited using an activated reactive evaporation process. The combined effects of substrate temperature (in the range 70–200 °C) and discharge currents (0–400 mA) on refractive index, extinction coefficient and packing density of these films are investigated. Significant changes in refractive index values have been observed with increases in substrate temperature and discharge current. The change in refractive index is correlated with the variation in packing density. The variation in extinction coefficient was reduced using the combined effects of substrate temperature and discharge currents. A comparison with films deposited in neutral oxygen has also been made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphenes with varying number of layers can be synthesized by using different strategies. Thus, single-layer graphene is prepared by micromechanical cleavage, reduction of single-layer graphene oxide, chemical vapor deposition and other methods. Few-layer graphenes are synthesized by conversion of nanodiamond, arc discharge of graphite and other methods. In this article, we briefly overview the various synthetic methods and the surface, magnetic and electrical properties of the produced graphenes. Few-layer graphenes exhibit ferromagnetic features along with antiferromagnetic properties, independent of the method of preparation. Aside from the data on electrical conductivity of graphenes and graphene-polymer composites, we also present the field-effect transistor characteristics of graphenes. Only single-layer reduced graphene oxide exhibits ambipolar properties. The interaction of electron donor and acceptor molecules with few-layer graphene samples is examined in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distinctive feature of single-layer graphene is the linearly dispersive energy bands, which in the case of multilayer graphene become parabolic. A simple electrical transport-based probe to differentiate between these two band structures will be immensely valuable, particularly when quantum Hall measurements are difficult, such as in chemically synthesized graphene nanoribbons. Here we show that the flicker noise, or the 1/f noise, in electrical resistance is a sensitive and robust probe to the band structure of graphene. At low temperatures, the dependence of noise magnitude on the carrier density was found to be opposite for the linear and parabolic bands. We explain our data with a comprehensive theoretical model that clarifies several puzzling issues concerning the microscopic origin of flicker noise in graphene field-effect transistors (GraFET).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of ordered phases that are formed when nitrogen is confined in slit graphite pores of height h is investigated using Monte Carlo simulations. The pore wall consists of a single-structured graphite sheet. Canonical ensemble simulations are carried out for temperatures ranging from 15 to 70Kwith layer density distributions, in-plane, out-of-plane angular distributions and snapshots evaluated at different temperatures. At each pore height the pore densities are obtained from independent grand ensemble simulations. At the smallest pore height studied (h)7 Å), where a single layer of molecules is accommodated at the center of the pore, the orientations are predominantly wall parallel, forming a biaxially incommensurate herringbone structure.Whentwo or more fluid layers are formed in the slit pore, the orientation of molecules adsorbed next to the wall can exist in either the herringbone or hexagonal phases. In all the multilayered cases studied, with the exception of the h ) 10 Å pore, where both wall layers form a commensurate herringbone structure, the low-temperature wall structures are incommensurate, possessing 6-fold hexagonal symmetry. The presence of the pinwheel structures, which were observed at low temperatures in the h ) 12 Å and h ) 14 Å pores, is determined by the pore height or the proximity and/or density of the adjacent fluid layers when inner layers are present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substrate temperature and ion bombardment during deposition have been observed to modify significantly the optical and structural properties of dielectric thin films. Singlelayer films of CeO2 have been deposited by electron beam evaporation with simultaneous oxygen‐ion bombardment using a Kaufman broad beam ion source and maintaining the substrates at elevated temperature. A systematic study has been made on the influence of (a) substrate temperature in the range ambient to 300 °C, (b) ion energy in the range 300–700 eV, and (c) ion current density 100–220 μA/cm2 on optical properties such as refractive index, extinction coefficient, inhomogeneity, packing density, and structural properties. The refractive index increased with in increase in substrate temperature: ion energy up to 600 eV and ion current density. Homogeneous, absorption free and high index (2.48) films have been obtained at 600 eV, 220 μA/cm2 and at substrate temperature of 300 °C. The packing density of the films was observed to be unity for the same deposition conditions. Substrate temperature with simultaneous ion bombardment modified the structure of the films from highly ordered to fine grain structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strong electron-phonon interaction which limits the electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in situ Raman scattering from a single-layer MoS2 electrochemically top-gated field-effect transistor (FET), we show softening and broadening of the A(1g) phonon with electron doping, whereas the other Raman-active E-2g(1) mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why the A(1g) mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single-layer MoS2-based FETs, which have a high on-off ratio and are of technological significance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we observe gate tunable negative differential conductance (NDC) and current saturation in single layer and bilayer graphene transistor at high source-drain field, which arise due to the interplay among (1) self-heating, (2) hot carrier injection, and (3) drain induced minority carrier injection. The magnitude of the NDC is found to be reduced for a bilayer, in agreement with its weaker carrier-optical phonon coupling and less efficient hot carrier injection. The contributions of different mechanisms to the observed results are decoupled through fast transient measurements with nanosecond resolution. The findings provide insights into high field transport in graphene. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4754103]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-layer graphene (SLG), the 3.4 angstrom thick two-dimensional sheet of sp(2) carbon atoms, was first prepared in 2004 by mechanical exfoliation of graphite crystals using the scotch tape technique. Since then, SLG has been prepared by other physical methods such as laser irradiation or ultrasonication of graphite in liquid media. Chemical methods of synthesis of SLG are more commonly used; the most popular involves preparation of single-layer graphene oxide followed by reduction with a stable reagent, often assisted by microwave heating. This method yields single-layer reduced graphene oxide. Other methods for preparing SLG include chemical vapour deposition over surfaces of transition metals such as Ni and Cu. Large-area SLG has also been prepared by epitaxial growth over SIC. Few-layer graphene (FLG) is prepared by several methods; arc discharge of graphite in hydrogen atmosphere being the most convenient. Several other methods for preparing FLG include exfoliation of graphite oxide by rapid heating, ultrasonication or laser irradiation of graphite in liquid media, reduction of few-layer graphene oxide, alkali metal intercalation followed by exfoliation. Graphene nanoribbons, which are rectangular strips of graphene, are best prepared by the unzipping of carbon nanotubes by chemical oxidation or laser irradiation. Many graphene analogues of inorganic materials such as MoS2, MoSe2 and BN have been prepared by mechanical exfoliation, ultrasonication and by chemical methods involving high-temperature or hydrothermal reactions and intercalation of alkali metals followed by exfoliation. Scrolls of graphene are prepared by potassium intercalation in graphite or by microwave irradiation of graphite immersed in liquid nitrogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gd2O3-based metal-insulator-metal capacitors have been characterized with single layer (Gd2O3) and bilayer (Gd2O3/Eu2O3 and Eu2O3/Gd2O3) stacks for analog and DRAM applications. Although single layer Gd2O3 capacitors provide highest capacitance density (15 fF/mu m(2)), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density (1.2x10(-5) A/cm(2) and 2.7 x 10(-5) A/cm(2) for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at -1 V), improve quadratic voltage coefficient of capacitance (331 ppm/V-2 and 374 ppm/V-2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole-Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.