929 resultados para Similarity Neighborhoods
Resumo:
In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. Psychological Science, 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133, 166-188.] demonstrated that children have better memory for the items that they generalise to than do adults. On the basis of this finding, they claim that children and adults use different mechanisms for inductive generalisations;whereas adults focus on shared category membership, children project properties on the basis of perceptual similarity. Sloutsky & Fisher attribute children's enhanced recognition memory to the more detailed processing required by this similarity-based mechanism. In Experiment I we show that children look at the stimulus items for longer than adults. In Experiment 2 we demonstrate that although when given just 250 ms to inspect the items children remain capable of making accurate inferences, their subsequent memory for those items decreases significantly. These findings suggest that there are no necessary conclusions to be drawn from Sloutsky & Fisher's results about developmental differences in generalisation strategy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
According to the diversity principle, diverse evidence is strong evidence. There has been considerable evidence that people respect this principle in inductive reasoning. However, exceptions may be particularly informative. Medin, Coley, Storms, and Hayes (2003) introduced a relevance theory of inductive reasoning and used this theory to predict exceptions, including the nondiversity-by-property-reinforcement effect. A new experiment in which this phenomenon was investigated is reported here. Subjects made inductive strength judgments and similarity judgments for stimuli from Medin et al. (2003). The inductive strength judgments showed the same pattern as that in Medin et al. (2003); however, the similarity judgments suggested that the pattern should be interpreted as a diversity effect, rather than as a nondiversity effect. It is concluded that the evidence regarding the predicted nondiversity-by-property-reinforcement effect does not give distinctive support for relevance theory, although this theory does address other results.
Resumo:
Connectivity mapping is the process of establishing connections between different biological states using gene-expression profiles or signatures. There are a number of applications but in toxicology the most pertinent is for understanding mechanisms of toxicity. In its essence the process involves comparing a query gene signature generated as a result of exposure of a biological system to a chemical to those in a database that have been previously derived. In the ideal situation the query gene-expression signature is characteristic of the event and will be matched to similar events in the database. Key criteria are therefore the means of choosing the signature to be matched and the means by which the match is made. In this article we explore these concepts with examples applicable to toxicology.
Resumo:
We present and analyze an algorithm to measure the structural similarity of generalized trees, a new graph class which includes rooted trees. For this, we represent structural properties of graphs as strings and define the similarity of two Graphs as optimal alignments of the corresponding property stings. We prove that the obtained graph similarity measures are so called Backward similarity measures. From this we find that the time complexity of our algorithm is polynomial and, hence, significantly better than the time complexity of classical graph similarity methods based on isomorphic relations. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
In the present paper we mainly introduce an efficient approach to measure the structural similarity of so called directed universal hierarchical graphs. We want to underline that directed universal hierarchical graphs can be obtained from generalized trees which are already introduced. In order to classify these graphs, we state our novel graph similarity method. As a main result we notice that our novel algorithm has low computational complexity. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We study an energy-constrained sandpile model with random neighbors. The critical behavior of the model is in the same universality class as the mean-field self-organized criticality sandpile. The critical energy E-c depends on the number of neighbors n for each site, but the various exponents are independent of n. A self-similar structure with n-1 major peaks is developed for the energy distribution p(E) when the system approaches its stationary state. The avalanche dynamics contributes to the major peaks appearing at E-Pk = 2k/(2n - 1) with k = 1,2,...,n-1, while the fine self-similar structure is a natural result of the way the system is disturbed. [S1063-651X(99)10307-6].
Resumo:
Web databases are now pervasive. Such a database can be accessed via its query interface (usually HTML query form) only. Extracting Web query interfaces is a critical step in data integration across multiple Web databases, which creates a formal representation of a query form by extracting a set of query conditions in it. This paper presents a novel approach to extracting Web query interfaces. In this approach, a generic set of query condition rules are created to define query conditions that are semantically equivalent to SQL search conditions. Query condition rules represent the semantic roles that labels and form elements play in query conditions, and how they are hierarchically grouped into constructs of query conditions. To group labels and form elements in a query form, we explore both their structural proximity in the hierarchy of structures in the query form, which is captured by a tree of nested tags in the HTML codes of the form, and their semantic similarity, which is captured by various short texts used in labels, form elements and their properties. We have implemented the proposed approach and our experimental results show that the approach is highly effective.
Resumo:
Chronic myelomonocytic leukemia is similar to but a separate entity from both myeloproliferative neoplasms and myelodysplastic syndromes, and shows either myeloproliferative or myelodysplastic features. We ask whether this distinction may have a molecular basis. We established the gene expression profiles of 39 samples of chronic myelomonocytic leukemia (including 12 CD34-positive) and 32 CD34-positive samples of myelodysplastic syndromes by using Affymetrix microarrays, and studied the status of 18 genes by Sanger sequencing and array-comparative genomic hybridization in 53 samples. Analysis of 12 mRNAS from chronic myelomonocytic leukemia established a gene expression signature of 122 probe sets differentially expressed between proliferative and dysplastic cases of chronic myelomonocytic leukemia. As compared to proliferative cases, dysplastic cases over-expressed genes involved in red blood cell biology. When applied to 32 myelodysplastic syndromes, this gene expression signature was able to discriminate refractory anemias with ring sideroblasts from refractory anemias with excess of blasts. By comparing mRNAS from these two forms of myelodysplastic syndromes we derived a second gene expression signature. This signature separated the myelodysplastic and myeloproliferative forms of chronic myelomonocytic leukemias. These results were validated using two independent gene expression data sets. We found that myelodysplastic chronic myelomonocytic leukemias are characterized by mutations in transcription/epigenetic regulators (ASXL1, RUNX1, TET2) and splicing genes (SRSF2) and the absence of mutations in signaling genes. Myelodysplastic chronic myelomonocytic leukemias and refractory anemias with ring sideroblasts share a common expression program suggesting they are part of a continuum, which is not totally explained by their similar but not, however, identical mutation spectrum. © 2013 Ferrata Storti Foundation.