876 resultados para Silica nanoparticle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Addressing the risks of nanoparticles requires knowledge about their hazards, which is generated progressively, but also about occupational exposure and liberation into the environment. However, currently such information is not systematically collected, therefore the risk assessment of this exposure or liberation lacks quantitative data. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. The goal of this study was to evaluate in a representative way the current prevalence and level of nanoparticle usage in Swiss industry, the health, safety and environment measures, and the number of potentially exposed workers. Results A representative, stratified mail survey was conducted among 1,626 clients of the Swiss National Accident Insurance Fund (SUVA). SUVA insures about 80,000 manufacturing firms, which represent 84% of all Swiss manufacturing companies. 947 companies answered the survey (58.3% response rate). Extrapolation to all Swiss manufacturing companies results in 1,309 workers (95%-confidence interval, 1,073 to 1,545) across the Swiss manufacturing sector being potentially exposed to nanoparticles in 586 companies (95%-CI: 145 to 1'027). This corresponds to 0.08% (95%-CI: 0.06% to 0.09%) of all Swiss manufacturing sector workers and to 0.6% (95%-CI: 0.2% to 1.1%) of companies. The industrial chemistry sector showed the highest percentage of companies using nanoparticles (21.2% of those surveyed) and a high percentage of potentially exposed workers (0.5% of workers in these companies), but many other important sectors also reported nanoparticles. Personal protection equipment was the predominant protection strategy. Only a minority applied specific environmental protection measures. Conclusions This is the first representative nationwide study on the prevalence of nanoparticle usage across a manufacturing sector. The information about the number of companies can be used for quantitative risk assessment. Furthermore it can help policy makers designing strategies to support companies in the responsible development of safer nanomaterial use. Noting the low prevalence of nanoparticle usage, there would still seem to be time to introduce necessary protection methods in a proactive and cost effective way in Swiss industry. But if the predicted "nano-revolution" becomes true, now is the time to take action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed colloidal crystals based on silica sub-micrometric particles were synthesized using the Stöber-Fink-Bohn process. The control of nucleation and coalescence result in improved characteristics such as high sphericity and very low size dispersion. The resulting silica particles show characteristics suitable for self-assembling across large areas of closely-packed 2D crystal monolayers by an accurate Langmuir-Blodgett deposition process on glass, fused silica and silicon substrates. Due to their special optical properties, colloidal films have potential applications in fields including photonics, electronics, electro-optics, medicine (detectors and sensors), membrane filters and surface devices. The deposited monolayers of silica particles were characterized by means of FESEM, AFM and optical transmittance measurements in order to analyze their specific properties and characteristics. We propose a theoretical calculation for the photonic band gaps in 2D systems using an extrapolation of the photonic behavior of the crystal from 3D to 2D. In this work we show that the methodology used and the conditions in self-assembly processes are decisive for producing high-quality two-dimensional colloidal crystals by the Langmuir-Blodgett technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manufactured nanoparticles are introduced into industrial processes, but they are suspected to cause similar negative health effects as ambient particles. The poor knowledge about the scale of this introduction did not allow global risk analysis so far. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. To gain this kind of information a layered representative questionnaire survey among 1'626 Swiss companies was conducted in 2007. Data was collected about the number of potentially exposed persons in the companies and their protection strategy. The response rate was 58.3%. An expected number of 586 companies (95%−confidence interval 145 to 1'027) was shown by this study to use nanoparticles in Switzerland. Estimated 1'309 (1'073 to 1'545) workers do their job in the same room as a nanoparticle application. Personal protection was shown to be the predominant type of protection means. Companies starting productions with nanomaterials need to consider incorporating protection measures into the plans. This will not only benefit the workers' health, but will also likely increase the competitiveness of the companies. Technical and organisational protection means are not only more cost−effective on the long term, but are also easier to control. Guidelines may have to be designed specifically for different industrial applications, including fields outside nanotechnology, and adapted to all sizes of companies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel synthesis of bulk silica-based luminescent materials using innocuous hexaethoxydisilane and hexamethoxydisilane monomers, followed by one hour thermal annealing in an inert atmosphere at 950oC-1150oC, is reported. As-synthesized hexamethoxydisilane-derived samples exhibit an intense blue photoluminescence band, whereas thermally treated ones emit stronger photoluminescence radiation peaking below 600 nm. For hexaethoxydisilane-based material, annealed at or above 1000oC, a less intense photoluminescence band, peaking between 780 nm and 850 nm that is attributed to nanocrystalline silicon is observed. Mixtures of both precursors lead to composed spectra, thus envisaging the possibility of obtaining pre-designed spectral behaviors by varying the mixture composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogeochemical cycles and sedimentary records in lakes are related to climate controls on hydrology and catchment processes. Changes in the isotopic imposition of the diatom frustules (δ 18 O diatom and δ 13 C diatom ) in lacustrine sediments can be used to reconstruct palaeoclimatic and palaeoenvironmental changes. The Lago Chungará (Andean Altiplano, 18°15 ′ S, 69°10 ′ W, 4520 masl) diatomaceous laminated sediments are made up of white and green multiannual rhythmites. White laminae were formed during short-term diatom super-blooms, and are composed almost exclusively of large-sized Cyclostephanos andinus.These diatoms bloom during mixing events when recycled nutrients from the bottom waters are brought to the surface and/or when nutrients are introduced from the catchment during periods of strong runoff. Conversely, the green laminae are thought to have been deposited over several years and are composed of a mixture of diatoms (mainly smaller valves of C. andinus and Discostella stelligera ) and organic matter. These green laminae reflect the lake's hydrological recovery from a status favouring the diatom super-blooms (white laminae) towards baseline conditions. δ 18 O diatom and δ 13 C diatom from 11,990 to 11,530 cal years BP allow us to reconstruct shifts in the precipitation/evaporation ratio and changes in the lake water dissolved carbon concentration, respectively. δ 18 O diatom values indicate that white laminae formation occurred mainly during low lake level stages, whereas green laminae formation generally occurred during high lake level stages. The isotope and chronostratigraphical data together suggest that white laminae deposition is caused by extraordinary environmental events. El Niño-Southern Oscillation and changes in solar activity are the most likely climate forcing mechanisms that could trigger such events, favouring hydrological changes at interannual-to-decadal scale. This study demonstrates the potential for laminated lake sediments to document extreme pluriannual events.