924 resultados para Shrinkage Estimators
Resumo:
Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon -25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator mississippiensis showed no statistically significant RVI within 120 min after shrinkage, while the lizard Tupinambis merianae showed 22% volume recovery after 120 min. Amiloride (10(-4) M) and bumetanide (10(-5) M) had no effect on the RVI in T merianae, indicating no involvement of the Na(+)/H(+) exchanger (NHE) or the Na(+)/K(+)/2Cl(-) co-transporter (NKCC) or insentive transporters. Deoxygenation of RBCs from A. mississippiensis and T merianae did not significantly affect RVI upon shrinkage. Deoxygenation per se of red blood cells from T merianae elicited a slow volume increase, but the mechanism was not characterized. It seems, therefore, that the RVI response based on NHE activation was lost among the early sauropsids that gave rise to modern reptiles and birds, while it was retained in mammals. An RVI response has then reappeared in birds, but based on activation of the NKCC. Alternatively, the absence of the RVI response may represent the most ancient condition, and could have evolved several times within vertebrates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fresh persimmon has a high moisture content (about 85% wet basis) making it highly perishable and requiring adequate drying conditions to obtain an acceptable dehydrated product. Drying kinetics of persimmon cv. Rama Forte was studied in a fixed bed dryer at temperatures ranging from 50 to 80 degreesC and air velocity of 0.8 m/s. Shrinkage during drying was described by a linear correlation with respect to water content. Evaluation of effective diffusivity as a function of moisture content, with undergoing shrinkage during drying was based on Fourier series solution of Fick's diffusion equation. Effective diffusivity values at moisture contents between 0.09 - 4.23 kg water/kg dry matter were found to be in the range of 2.6 x 10(-10) m(2)/s to 5.4 x 10(-10) m(2)/s, and its dependence on air drying temperature was represented by an Arrhenius type equation. Activation energy increased with decreasing water content in persimmons.
Resumo:
The shrinking behavior, apparent densities and rehydration indexes of fresh and osmotically pre-treated pineapple slices during air-drying were obtained. The air drying velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature. Volumetric shrinkage of fresh samples was temperature independent for drying at high air velocities but, at lower velocities, increased with decreasing drying temperature. Osmotically pre-treating the material resulted in reduced shrinkage, as well as drying with product temperature controlled, due to lower drying times needed that led to shorter high temperature exposition. Moisture dependence of apparent density was highly non-linear and could be fitted by an empirical model. Fresh sample rehydration indexes were higher than osmosed ones and increased with increasing temperature, except for pre-treated samples dried at 70 degreesC, probably due to superficial sugar caramelization, which reduced surface water permeability.
Resumo:
Objective: To evaluate the linear polymerization shrinkage (LPS) and the effect of polymerization shrinkage of a resin composite and resin-dentin bond strength under different boundary conditions and filling techniques.Methods: Two cavities (4 x 4 x 2 MM) were prepared in bovine incisors (n = 30). The teeth were divided into three groups, according to boundary conditions: In group TE, the total-etch technique was used. In group EE, only enamel was conditioned, and in group NE, none of the watts of the cavities were conditioned. A two-step adhesive system was applied to all cavities. The resin composite was inserted in one (B) or three increments (1), and tight-cured with 600 mW/cm(2) (80 s). The LPS (%) was measured in the top-bottom direction, by placing a probe in contact with resin composite during curing. Enamel and total mean gap widths were measured (400 x) in three slices obtained after sectioning the restorations. Then, the slices were sectioned again, either to obtain sticks from the adhesive interface from the bottom of the cavity or to obtain resin composite sticks (0.8 mm(2)) to be tested for tensile strength (Kratos machine, 0.5 mm/min). The data was subjected to a two-way repeated measures ANOVA and Tukey's test for comparison of the means (alpha = 0.05).Results: the highest percentage of LPS was found for the TE when bulk fitted, and the lowest percentage of LPS was found in the Hand NE when incrementally fitted. The resin dentin bond strength was higher and the total mean gap width was tower for TE group; no significant effect was detected for the main factor fitting techniques. No difference was detected for the tensile strength of resin composite among the experimental groups.Conclusions: the filling technique is not able to minimize effects of the polymerization shrinkage, and bonding to the cavity watts is necessary to assure reduced mean gap width and high bond strength values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. There are few studies on titanium casting shrinkage, and phosphate-bonded investments for titanium casting have not produced appropriate marginal fit.Purpose. The purpose of this study was to determine the thermal shrinkage of titanium and the setting and thermal expansion of 3 phosphate-bonded investments.Material and methods. The thermal shrinkage between the melting temperature and room temperature was calculated using a titanium thermal expansion coefficient. The thermal and setting expansion were measured for 3 phosphate bonded investments: Rematitan Plus (RP) specific for titanium, Rema Exakt (RE), and Castorit Super C (CA), using different special liquid concentrations (100%, 75%, and 50%). Setting expansion was measured for cylindrical specimens 50 mm long x 8 mm in diameter with a transducer. The heating and cooling curves were obtained with a dilatometer (DIL 402 PC). The total expansion curve was drawn using software, and temperatures to obtain expansion equivalent to titanium casting shrinkage were determined (n=5). In addition, the total expansion of the control group (RP at 430 degrees C) was measured, as well as the temperatures at which the other groups achieved equivalent total expansion (n=5). Data were analyzed by 1-way ANOVA and the Tukey HSD test (alpha=.05).Results. Titanium casting shrinkage was estimated as 1.55%. RP did not achieve this expansion. RE achieved expansion of 1.55% only with a special liquid concentration of 100% at 594 degrees C. CA with all special liquid concentrations attained this expansion (351 degrees C to 572 degrees C). Total expansion of the control group was 0.86%, and the other groups reached that expansion within the range of 70 degrees C to 360 degrees C.Conclusions. Only RE and CA demonstrated sufficient expansion to compensate for titanium casting shrinkage. All groups reached total expansion equivalent to that of the control group at significantly lower temperatures.
Resumo:
The iterative quadratic maximum likelihood IQML and the method of direction estimation MODE are well known high resolution direction-of-arrival DOA estimation methods. Their solutions lead to an optimization problem with constraints. The usual linear constraint presents a poor performance for certain DOA values. This work proposes a new linear constraint applicable to both DOA methods and compare their performance with two others: unit norm and usual linear constraint. It is shown that the proposed alternative performs better than others constraints. The resulting computational complexity is also investigated.
Resumo:
Modern restorative dentistry has been playing an outstanding role lately since composite resins, allied to adhesive systems, have been widely applied on anterior and posterior teeth restorations. The evolution of composite resins has mostly been verified due to the improvement of their aesthetic behavior and the increase in their compressive and abrasive strengths. In spite of these developments, the polymerization shrinkage inherent to the material has been a major deficiency that, so far, has been impossible to avoid. Using a gas pycnometry, this research investigated the polymerization shrinkage of three packable composite resins: Filtek P60 (3M), Prodigy Condensable (Kerr), and SureFil (Dentsply/Caulk), varying the distance from the light source to the surface of the resins (2 mm or 10 mm). The pycnometer Accupyc 1330 (Micromeritics, USA) precisely records helium displacement, allowing fast and reliable measurements of the volume of composite resin immediately before and after polymerization, without interference of temperature or humidity. Results were not found to be statistically different for the three tested resins, either for 2 mm or 10 mm-distance from the light source to the composite surface.
Resumo:
The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.
Resumo:
The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep) surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA) and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA) (G1); Filtek Z-350 (3M/ESPE,St Paul, MN, USA) (G2); Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA) (G3); Premisa (KERR Corporation, Orange, CA, USA) (G4). Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA) + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA). After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54) or depth (p = 0.8364) of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.
Resumo:
Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Evaluations of measurement invariance provide essential construct validity evidence. However, the quality of such evidence is partly dependent upon the validity of the resulting statistical conclusions. The presence of Type I or Type II errors can render measurement invariance conclusions meaningless. The purpose of this study was to determine the effects of categorization and censoring on the behavior of the chi-square/likelihood ratio test statistic and two alternative fit indices (CFI and RMSEA) under the context of evaluating measurement invariance. Monte Carlo simulation was used to examine Type I error and power rates for the (a) overall test statistic/fit indices, and (b) change in test statistic/fit indices. Data were generated according to a multiple-group single-factor CFA model across 40 conditions that varied by sample size, strength of item factor loadings, and categorization thresholds. Seven different combinations of model estimators (ML, Yuan-Bentler scaled ML, and WLSMV) and specified measurement scales (continuous, censored, and categorical) were used to analyze each of the simulation conditions. As hypothesized, non-normality increased Type I error rates for the continuous scale of measurement and did not affect error rates for the categorical scale of measurement. Maximum likelihood estimation combined with a categorical scale of measurement resulted in more correct statistical conclusions than the other analysis combinations. For the continuous and censored scales of measurement, the Yuan-Bentler scaled ML resulted in more correct conclusions than normal-theory ML. The censored measurement scale did not offer any advantages over the continuous measurement scale. Comparing across fit statistics and indices, the chi-square-based test statistics were preferred over the alternative fit indices, and ΔRMSEA was preferred over ΔCFI. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their analyses.
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The C-Factor has been used widely to rationalize the changes in shrinkage stress occurring at the tooth/resin-composite interfaces. Experimentally, such stresses have been measured in a uniaxial direction between opposed parallel walls. The situation of adjoining cavity walls has been neglected. The aim was to investigate the hypothesis that: within stylized model rectangular cavities of constant volume and wall thickness, the interfacial shrinkage-stress at the adjoining cavity walls increases steadily as the C-Factor increases. Methods. Eight 3D-FEM restored Class I 'rectangular cavity' models were created by MSC.PATRAN/MSC.Marc, r2-2005 and subjected to 1% of shrinkage, while maintaining constant both the volume (20 mm(3)) and the wall thickness (2 mm), but varying the C-Factor (1.9-13.5). An adhesive contact between the composite and the teeth was incorporated. Polymerization shrinkage was simulated by analogy with thermal contraction. Principal stresses and strains were calculated. Peak values of maximum principal (MP) and maximum shear (MS) stresses from the different walls were displayed graphically as a function of C-Factor. The stress-peak association with C-Factor was evaluated by the Pearson correlation between the stress peak and the C-Factor. Results. The hypothesis was rejected: there was no clear increase of stress-peaks with C-Factor. The stress-peaks particularly expressed as MP and MS varied only slightly with increasing C-Factor. Lower stress-peaks were present at the pulpal floor in comparison to the stress at the axial walls. In general, MP and MS were similar when the axial wall dimensions were similar. The Pearson coefficient only expressed associations for the maximum principal stress at the ZX wall and the Z axis. Significance. Increase of the C-Factor did not lead to increase of the calculated stress-peaks in model rectangular Class I cavity walls. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.