874 resultados para Sheep and goats
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The demand for "welfare friendly" products increases as public conscience and perception on livestock production systems grow. The public and policy-makers demand scientific information for education and to guide decision processes. This paper describes some of the last decade contributions made by scientists on the technical, economical and market areas of farm animal welfare. Articles on animal welfare were compiled on the following themes: 1) consumer behavior, 2) technical and economical viability, 3) public regulation, and 4) private certification policies. Most studies on the economic evaluation of systems that promote animal welfare involved species destined to produce export items, such as eggs, beef and pork. Few studies were found on broilers, dairy cows and fish, and data regarding other species, such as horses, sheep and goats were not found. Scientists understand that farm animal welfare is not only a matter of ethics, but also an essential tool to gain and maintain markets. However, it is unfortunate that little attention is paid to species that are not economically important for exports. Studies that emphasize on more humane ways to raise animals and that provide economic incentives to the producer are needed. An integrated multidisciplinary approach is necessary to highlight the benefits of introducing animal welfare techniques to existing production systems.
Resumo:
Parapoxvirus (PPV) are member of a genus in the family poxviridae which currently encompasses four species: the prototype orf virus (OV), bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV) and parapoxvirus of New Zealand red deer (PVNZ). PPVs cause widespread, but localized diseases of small and large ruminants and they can also be transmitted to man. Knowledge of the molecular biology of PPV is still limited as compared to orthopoxviruses, especially vaccinia virus (VACV). The PPV genome displays a high G+C content and relatively small size for poxvirus. Coventional electron microscopy displays PPV virions with ovoid shape and slightly smaller in size than the brickshaped orthopoxviruses. The most striking feature, which readily enables identification of PPV, is a tubule-like structure that surrounds the particle in a spiral fashion. PPV genome organization and content is very similar to that of other poxviruses, the central region contain 88 genes which are present in all poxviruse, in contrast the terminal regions are variable and contain a set of genes unique to the genus PPV. Genes in the near-terminal regions of the genome are frequently not essential for growth in cultured cells encoding factors with important roles in virushost interactions including modulating host immune responses and determining host range. Recently it was suggested that the open reading frames (ORFs) 109 and 110 of the OV genome have a major role in determining species specificity during natural infection in sheep and goats. This hypothesis is based on the analysis of a few number of sequences of different sheep and goats viral isolates. PPV replicate into the cytoplasm of infected cells and produce three structurally different infectious particles: the intracellular mature virions (IMV), intracellular enveloped virions (IEV) and the extracellular enveloped virions (EEV). The vaccinia A33R and A34R hotologue proteins encoded by the ORFS 109 and 110 are expressed in the envelope of the IEV and EEV. The F1L immunodominant protein of orf virus is the major component of the surface tubule structure of the IMV and can post-translationaly insert into membranes via Cterminal, hydrofobic anchor sequence like its orthologue VACV H3L protein. Moreover the F1L protein binds to glycosaminoglycans on the cell surface and has an important role in IMV adsorption to mammalian cells. In this study we investigated the morphogenesis of the PPV through the construction of a mutant virus deleted of the F1L protein. A study of the deleted virus life cycle was conducted in different type of cells and its morphology was observed with electron microscopy. It was demonstared that F1L protein have important role in morphogenesis and infectivity. Moreover it is essential to determine the spiral fashion of the tubule like structure of the virion surface. Some pathogenetic aspects of the PPV infection were studied, in particular the protein implicated in the host range were analysed in detail. An experimental infection with OV and PCPV was conducted in goats and sheep. After infection, the severity of the lesions were comparable in both the animal species. The OV did not result in severe disease neither in sheep nor in goats, suggesting that host factors, rather than virus strain characteristics, may play an important role in the pathogenesis of the Parapoxvirus infections. The PCPV failed to produce any lesion in both sheep and goats, ruling out the possibility of any recombination between PCPV and OV during natural infection in these animal species. The phylogenetic analysis of the ORFs 109 and 110 from several goats and sheep viral isolates showed a clustering based on the antigenic content of the protein that was independent from species and geographic origin.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
The pathobiology of atypical scrapie, a prion disease affecting sheep and goats, is still poorly understood. In a previous study, we demonstrated that atypical scrapie affecting small ruminants in Switzerland differs in the neuroanatomical distribution of the pathological prion protein (PrP(d)). To investigate whether these differences depend on host-related vs. pathogen-related factors, we transmitted atypical scrapie to transgenic mice over-expressing the ovine prion protein (tg338). The clinical, neuropathological, and molecular phenotype of tg338 mice is similar between mice carrying the Swiss atypical scrapie isolates and the Nor98, an atypical scrapie isolate from Norway. Together with published data, our results suggest that atypical scrapie is caused by a uniform type of prion, and that the observed phenotypic differences in small ruminants are likely host-dependant. Strikingly, by using a refined SDS-PAGE technique, we established that the prominent proteinase K-resistant prion protein fragment in atypical scrapie consists of two separate, unglycosylated peptides with molecular masses of roughly 5 and 8 kDa. These findings show similarities to those for other prion diseases in animals and humans, and lay the groundwork for future comparative research.
Resumo:
Listeriosis is a serious food-borne disease with increasing frequency in humans and ruminants. Despite the facts that in both hosts, listeriosis can occur as rhombencephalitis and ruminants are a reservoir of Listeria monocytogenes (LM) strains pathogenic for humans, little work has been done on the pathogenesis in ruminants. This study investigates the neuropathogenesis of listeric encephalitis in over 200 natural cases in cattle, sheep and goats by analyzing anatomical distribution, severity, bacterial load and temporal evolution of the lesions. Our results suggest that LM gains access to the brainstem of all three species via axonal migration not only along the trigeminal nerve, but also along other nerves. The ensuing encephalitis does not remain restricted to the brainstem. Rather, LM spreads further from the brainstem into rostral brain regions likely by intracerebral axonal migration. Significant differences in severity of the lesions and bacterial load were found between cattle and small ruminants, which may be caused by species-specific properties of antibacterial immune responses. As histopathological lesions of human rhombencephalitis caused by LM strongly resemble those of ruminants, the disease likely has a similar pathogenesis in both hosts.
Resumo:
Scrapie is a transmissible spongiform encephalopathy (TSE) in sheep and goats. In recent years, atypical scrapie cases were identified that differed from classical scrapie in the molecular characteristics of the disease-associated pathological prion protein (PrP(sc)). In this study, we analyze the molecular and neuropathological phenotype of nine Swiss TSE cases in sheep and goats. One sheep was identified as classical scrapie, whereas six sheep, as well as two goats, were classified as atypical scrapie. The latter revealed a uniform electrophoretic mobility pattern of the proteinase K-resistant core fragment of PrP(sc) distinct from classical scrapie regardless of the genotype, the species, and the neuroanatomical structure. Remarkably different types of neuroanatomical PrP(sc) distribution were observed in atypical scrapie cases by both western immunoblotting and immunohistochemistry. Our findings indicate that the biodiversity in atypical scrapie is larger than expected and thus impacts on current sampling and testing strategies in small ruminant TSE surveillance.
Resumo:
Recently, screening tests for monitoring the prevalence of transmissible spongiform encephalopathies specifically in sheep and goats became available. Although most countries require comprehensive test validation prior to approval, little is known about their performance under normal operating conditions. Switzerland was one of the first countries to implement 2 of these tests, an enzyme-linked immunosorbent assay (ELISA) and a Western blot, in a 1-year active surveillance program. Slaughtered animals (n = 32,777) were analyzed in either of the 2 tests with immunohistochemistry for confirmation of initial reactive results, and fallen stock samples (n = 3,193) were subjected to both screening tests and immunohistochemistry in parallel. Initial reactive and false-positive rates were recorded over time. Both tests revealed an excellent diagnostic specificity (>99.5%). However, initial reactive rates were elevated at the beginning of the program but dropped to levels below 1% with routine and enhanced staff training. Only those in the ELISA increased again in the second half of the program and correlated with the degree of tissue autolysis in the fallen stock samples. It is noteworthy that the Western blot missed 1 of the 3 atypical scrapie cases in the fallen stock, indicating potential differences in the diagnostic sensitivities between the 2 screening tests. However, an estimation of the diagnostic sensitivity for both tests on field samples remained difficult due to the low disease prevalence. Taken together, these results highlight the importance of staff training, sample quality, and interlaboratory comparison trials when such screening tests are implemented in the field.
Resumo:
Scrapie, a disease of sheep and goats with a progressive course and fatal outcome, has not been identified in Nigeria. Anecdotal scrapie reports by livestock workers abound. Livestock diseases like scrapie form huddles in livestock economics of countries. For 8 months we surveyed for scrapie targeting emergency/casualty slaughter sheep and goats in Jos, Nigeria. We clinically examined 510 sheep and 608 goats of local breeds, aged from 12 months to 5 years. In total 31 (5.10%) goats and no sheep were clinically suspicious for scrapie. Caudal brainstem tissues of suspect animals collected postmortem were analyzed for the disease specific form of the prion protein, PrPSc, using Bio-Rad’s TeSeE ELISA rapid test kit. No sample was positive for scrapie. Fluorescent antibody test for rabies and H&E staining on samples were carried out for differential diagnosis. These showed no pathological lesions indicative for neurological disease. While our findings do not exclude the presence of scrapie in Jos, we demonstrate that targeted sampling of small ruminants for neuroinfectious disease is feasible in developing countries, pointing to the possibility of implementing such a monitoring scheme in Nigeria to prevent economic losses in small ruminant livestock as scrapie caveats from endemic countries have shown.
Resumo:
As exigências das condições higiênico-sanitárias na produção de animais de interesse zootécnico vêm aumentando progressivamente dada à necessidade de aliar-se produtividade a produtos de alta qualidade para atender a mercados consumidores cada vez mais exigentes. Nesse sentido, a utilização de antimicrobianos, tanto na profilaxia como na terapêutica, permanece como estratégia de controle para vários microrganismos patogênicos, de importância não apenas para a produção animal como também para a saúde humana, ainda que restrições ao uso indiscriminado desses produtos têm se intensificado. Não obstante, o uso excessivo desses produtos está associado à seleção de microrganismos resistentes nas áreas de produção. Por outro lado, investigações sobre circulação de cepas resistentes em rebanhos animais, até então restritas a populações humanas, ainda permanecem limitadas no Brasil. Bactérias do gênero Enterococcus, integrantes usuais da microbiota gastrointestinal animal e humana, são indicadoras ambientais de contaminação fecal e tem-se tornado objeto de preocupação em saúde pública e veterinária dada a ocorrência de cepas resistentes à vancomicina (VRE). O presente trabalho teve como objetivo isolar, quantificar e caracterizar VRE presentes em amostras fecais de ovinos oriundos de pequenas propriedades das regiões centro-leste e nordeste do estado de São Paulo. Para tanto, 132 amostras fecais foram coletadas diretamente do reto dos animais ou do piso das instalações. As amostras foram semeadas em ágar m-Enterococcus e subcultivadas em Ágar Bile Esculina acrescido de 6 µg/mL de vancomicina (ABEV), para confirmação de Enterococcus spp e detecção de cepas resistentes. Procedeu-se igualmente a observação da morfologia, características tintoriais, bioquímicas e moleculares. O número máximo de Enterococcus spp. encontrado foi de 2,6 × 105 e 1,70 × 105 UFC/g de fezes do ambiente e dos animais, respectivamente. Na caracterização bioquímica espécies mais prevalentes foram: Enterococcus faecalis e Vagococcus fluvialis. No ABEV, houve crescimento de colônias VRE em 33 das 84 amostras de ovinos-caprinos e em 21 das 48 amostras ambientais, representando, respectivamente 46,7% e 29,3% das amostras analisadas. A análise por multiplex PCR das 54 cepas VRE obtidas indicaram que 23 (43%), 22 (41%), 2 (3,5%) e 2 (3,5%) foram positivas, respectivamente, para os genes vanC2/C3, vanC1, vanA e vanB, sendo que para 5,3% dos isolados nenhum produto foi amplificado, sugerindo a possível ocorrência de genes dos demais grupos van conhecidos entre os isolados. Os resultados obtidos indicam, de forma inédita no país, a circulação de VRE em propriedades produtoras de ovinos e caprinos, sem ocorrência de manifestações clínicas aparentes nos animais, porém com possíveis riscos à saúde dos produtores e profissionais envolvidos, bem como a eventuais consumidores.
Resumo:
The goat and sheep industry shows up as an agricultural activity of great importance for the semiarid Northeast. However, the sheep and goats production is made with various difficulties. Among them, parasitic infections, particularly helminth infections of the gastrointestinal tract, the eimeriosis and toxoplasmosis; this one related to problems in reproduction. For this reason, the aim of this study is to to make a survey of the occurrence and some determinants of parasitic diseases that affect small ruminant flocks of the microregions Natal, Macaíba, Litoral Sul, Angicos, Vale do Açu and Borborema Potiguar. Thereunto, epidemiological tools were applied with producers, keepers or guardians of herds and also held collections of blood and feces of animals in eight properties located in seven municipalities of these microregions. The parasite load of the animals was determined through eggs and oocysts counting per gram of feces EPG and OPG, respectively. In addition, the recovery of infective larvae was made. Blood samples were used to measure the globular cell volume and the search for anti-Toxoplasma gondii IgG in sheep serum, by Enzyme Linked Immune Sorbent Assay (ELISA). For categorical variables, the statistical analysis was performed using Poisson regression, with significance level of 0.05. The analysis of the instruments showed that ivermectin is the anthelmintic used in 85,71% of properties. From the total of feces samples of the sheep (n = 179), 53,07% were positive for helminth eggs and 48,04% were positive for oocysts of Eimeria. From the samples of faeces of goats (n = 133), 72,18% were positive for helminth eggs and 96,99% for oocysts of Eimeria. The lowest EPG and OPG count was observed in the micro region of Angicos. Most of the EPG count was found in the micro region Litoral Sul and the OPG count in the micro-region Borborema Potiguar. Both cases the difference was statistically significant(p- value0,000)The most prevalent helminth genus found was Haemonchus, present in 49,87% of the sheep and 80,42% of goats. The average of hematocrit ranged from 22,91 to 33,25 in sheep and from 22,62 to 28,25 in goats. The prevalence of anti-Toxoplasma gondii IgG ranged from 63,33% to 100,00%. The goats showed to be more susceptible to infections by parasites of the gastrointestinal tract than the sheep. In all the properties was observed high prevalence of infection by T. gondii, with the lowest percentages recorded in the micro regions Angicos and Borborema Potiguar.
Resumo:
Regarding this issue, it seems appropriate to quote Gorman who says: And it came to pass that when Kutta, assistant God made the first library, she noted that it was good. So he called together all librarians and divided as a shepherd divides the sheep and goats. The first group spoke to him saying: you will dwell in the clarity and serve the readers and their glory will be great. Then he turned to the second group and spoke to him saying: you will dwell in the darkness. Secret must be hidden effort and work. You do not know the reader nor shall you know them. Go away and sort ... and has been up to these days (1979, p. 435).
Resumo:
Toxoplasma gondii is an obligate intracellular parasite with a variety of hosts, responsible for reproductive problems and economic losses in sheep flocks. Neospora caninum was recently identified and its clinical presentation in sheep is similar to that of toxoplasmosis, which can cause repeated abortions, though less frequently in this species. In order to confirm the prevalence of these agents in the city of Mossoro, Rio Grande do Norte, Brazil, 409 serum samples from adult sheep (364 females and 45 males) were tested by the indirect immunofluorescence antibody test, using cut-off point at a dilution of 1:64 and 1:50 for T. gondii and N. caninum, respectively. From the 35 properties examined, 23 (65.7%)had at least one seropositive animal for T gondii and six (17.1%) for N. caninum. The prevalence of seropositive animals for T. gondii was 20.7% and for N. caninum 1.8%. There was no association between the presence of the agent`s antibody and gender, reports of reproductive problems and presence of dogs and/or cats in the properties. T. gondii is well distributed and N. caninum has low prevalence in sheep and in the properties of the studied region. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recombination of different strains and subtypes is a hallmark of lentivirus infections, particularly for human immunodeficiency virus, and contributes significantly to viral diversity and evolution both within individual hosts and within populations. Recombinant viruses are generated in individuals coinfected or superinfected with more than one lentiviral strain or subtype. This, however, has never been described in vivo for the prototype lentivirus maedi-visna virus of sheep and its closely related caprine counterpart, the caprine arthritis-encephalitis virus. Cross-species infections occur in animals living under natural conditions, which suggests that dual infections with small-ruminant lentiviruses (SRLVs) are possible. In this paper we describe the first documented case of coinfection and viral recombination in two naturally infected goats. DNA fragments encompassing a variable region of the envelope glycoprotein were obtained from these two animals by end-limiting dilution PCR of peripheral blood mononuclear cells or infected cocultures. Genetic analyses, including nucleotide sequencing and heteroduplex mobility assays, showed that these goats harbored two distinct populations of SRLVs. Phylogenetic analysis permitted us to assign these sequences to the maedi-visna virus group (SRLV group A) or the caprine arthritis-encephalitis virus group (SRLV group B). SimPlot analysis showed clear evidence of A/B recombination within the env gene segment of a virus detected in one of the two goats. This case provides conclusive evidence that coinfection by different strains of SRLVs of groups A and B can indeed occur and that these viruses actually recombine in vivo.