959 resultados para Shallow-water Expansion
Resumo:
A reduced dynamical model is derived which describes the interaction of weak inertia–gravity waves with nonlinear vortical motion in the context of rotating shallow–water flow. The formal scaling assumptions are (i) that there is a separation in timescales between the vortical motion and the inertia–gravity waves, and (ii) that the divergence is weak compared to the vorticity. The model is Hamiltonian, and possesses conservation laws analogous to those in the shallow–water equations. Unlike the shallow–water equations, the energy invariant is quadratic. Nonlinear stability theorems are derived for this system, and its linear eigenvalue properties are investigated in the context of some simple basic flows.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.
Resumo:
Water waves generated by a solid mass is a complex phenomenon discussed in this paper by numerical and experimental approaches. A model based on shallow water equations with shocks (Saint Venant) has developed. It can reproduce the amplitude and the energy of the wave quite well, but because it consistently generates a hydraulic jump, it is able to reproduce the profile, in the case of high relative thickness of slide, but in the case of small relative thickness it is unable to reproduce the amplitude of the wave. As the momentum conservation is not verified during the phase of wave creation, a second technique based on discharge transfer coefficient α, is introduced at the zone of impact. Numerical tests have been performed and validated this technique from the experimental results of the wave's height obtained in a flume.
Resumo:
In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Photo-induced toxicity of anthracene in the Antarctic shallow water amphipod, Gondogeneia antarctica
Resumo:
The photo-induced toxicity of anthracene was investigated as the mortality in Antarctic shallow water amphipod, Gondogeneia antarctica, at different concentrations of anthracene and different periods of exposure to natural sunlight and artificial UVA and UVB radiations. When exposed to natural sunlight, animals contaminated in the dark and placed in clean water or in anthracene solutions showed different degrees of mortality, dose-time dependent. Effects were even more evident when these animals were exposed to artificial UVA or UVB radiations. Depuration seemed to be a slow process. The effects of UV radiation and anthracene alone and the effects of the interactions of these two stressors implied that solar radiation is an important parameter that deserves consideration in the environmental assessment of polycyclic aromatic hydrocarbons in Antarctic coastal waters. G. antarctica proved to be a good bioindicator for the phototoxicity of anthracene in Antarctic shallow waters.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.
Resumo:
Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.
Resumo:
The marine aragonite cycle has been included in the global biogeochemical model PISCES to study the role of aragonite in shallow water CaCO3 dissolution. Aragonite production is parameterized as a function of mesozooplankton biomass and aragonite saturation state of ambient waters. Observation-based estimates of marine carbonate production and dissolution are well reproduced by the model and about 60% of the combined CaCO3 water column dissolution from aragonite and calcite is simulated above 2000 m. In contrast, a calcite-only version yields a much smaller fraction. This suggests that the aragonite cycle should be included in models for a realistic representation of CaCO3 dissolution and alkalinity. For the SRES A2 CO2 scenario, production rates of aragonite are projected to notably decrease after 2050. By the end of this century, global aragonite production is reduced by 29% and total CaCO3 production by 19% relative to pre-industrial. Geographically, the effect from increasing atmospheric CO2, and the subsequent reduction in saturation state, is largest in the subpolar and polar areas where the modeled aragonite production is projected to decrease by 65% until 2100.
Resumo:
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.