949 resultados para Self-explaining roads Intersezioni a raso Autoesplicativa Mobile Eye Tracker
Resumo:
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical coherence and consistency . This investigation provides a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. This research analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Looking forward in this direction, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature: proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. Using quantitative qualitative methods, evidence is presented to justify a parallel study of different modalities of musical self-similarity. For this purpose, original arguments by Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the subject. Furthermore, connecting Charles S. Peirce s synechism with Mandelbrot s fractality is one of the main developments of the present study. This study provides elements for explaining Bolognesi s (1983) conjecture, that states that the most primitive, intuitive and basic musical device is self-reference, extending its functions and operations to self-similar surfaces. In this sense, this research suggests that, with various modalities of self-similarity, synecdochic intersemiosis acts as system of systems in coordination with greater or lesser development of structural consistency, and with a greater or lesser contextual dependence.
Resumo:
Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.
Resumo:
Remanufacturing activities in India are still in nascent stages. However, the substantial growth of Indian economy, coupled with serious issues of population and environmental burden demands a radical shift in market strategies and legislations. The scattered and inefficient product recovery methods prevalent in India are unable to cope with increasing environmental and economic burden on the society - remanufacturing seems to be a promising strategy to explore for these. Our study investigated from a user's context the opportunity of establishing remanufacturing as a formal activity, answering the fundamental questions of whether remanufactured products would be accepted by Indian consumers and how these will fit into the Indian market. The study of the Indian mobile phone market eco-system showed how mobile phones currently move through the value chain, and the importance of the grey and used phone markets in this movement. A prescriptive model has been proposed which utilizes the usage patterns of different consumer groups to create a self-sustainable demand-supply system, potentially complementing frameworks such as the Automotive Remanufacturing Decision-Making Framework (RDMF). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.
All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.
We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.
Resumo:
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.
Resumo:
Conjugative plasmids play a vital role in bacterial adaptation through horizontal gene transfer. Explaining how plasmids persist in host populations however is difficult, given the high costs often associated with plasmid carriage. Compensatory evolution to ameliorate this cost can rescue plasmids from extinction. In a recently published study we showed that compensatory evolution repeatedly targeted the same bacterial regulatory system, GacA/GacS, in populations of plasmid-carrying bacteria evolving across a range of selective environments. Mutations in these genes arose rapidly and completely eliminated the cost of plasmid carriage. Here we extend our analysis using an individual based model to explore the dynamics of compensatory evolution in this system. We show that mutations which ameliorate the cost of plasmid carriage can prevent both the loss of plasmids from the population and the fixation of accessory traits on the bacterial chromosome. We discuss how dependent the outcome of compensatory evolution is on the strength and availability of such mutations and the rate at which beneficial accessory traits integrate on the host chromosome.
Resumo:
Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.
Resumo:
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.
Resumo:
How do our brains transform the "blooming buzzing confusion" of daily experience into a coherent sense of self that can learn and selectively attend to important information? How do local signals at multiple processing stages, none of which has a global view of brain dynamics or behavioral outcomes, trigger learning at multiple synaptic sites when appropriate, and prevent learning when inappropriate, to achieve useful behavioral goals in a continually changing world? How does the brain allow synaptic plasticity at a remarkably rapid rate, as anyone who has gone to an exciting movie is readily aware, yet also protect useful memories from catastrophic forgetting? A neural model provides a unified answer by explaining and quantitatively simulating data about single cell biophysics and neurophysiology, laminar neuroanatomy, aggregate cell recordings (current-source densities, local field potentials), large-scale oscillations (beta, gamma), and spike-timing dependent plasticity, and functionally linking them all to cognitive information processing requirements.
Resumo:
The healthcare industry is beginning to appreciate the benefits which can be obtained from using Mobile Health Systems (MHS) at the point-of-care. As a result, healthcare organisations are investing heavily in mobile health initiatives with the expectation that users will employ the system to enhance performance. Despite widespread endorsement and support for the implementation of MHS, empirical evidence surrounding the benefits of MHS remains to be fully established. For MHS to be truly valuable, it is argued that the technological tool be infused within healthcare practitioners work practices and used to its full potential in post-adoptive scenarios. Yet, there is a paucity of research focusing on the infusion of MHS by healthcare practitioners. In order to address this gap in the literature, the objective of this study is to explore the determinants and outcomes of MHS infusion by healthcare practitioners. This research study adopts a post-positivist theory building approach to MHS infusion. Existing literature is utilised to develop a conceptual model by which the research objective is explored. Employing a mixed-method approach, this conceptual model is first advanced through a case study in the UK whereby propositions established from the literature are refined into testable hypotheses. The final phase of this research study involves the collection of empirical data from a Canadian hospital which supports the refined model and its associated hypotheses. The results from both phases of data collection are employed to develop a model of MHS infusion. The study contributes to IS theory and practice by: (1) developing a model with six determinants (Availability, MHS Self-Efficacy, Time-Criticality, Habit, Technology Trust, and Task Behaviour) and individual performance-related outcomes of MHS infusion (Effectiveness, Efficiency, and Learning), (2) examining undocumented determinants and relationships, (3) identifying prerequisite conditions that both healthcare practitioners and organisations can employ to assist with MHS infusion, (4) developing a taxonomy that provides conceptual refinement of IT infusion, and (5) informing healthcare organisations and vendors as to the performance of MHS in post-adoptive scenarios.
Resumo:
Aim: To develop and evaluate the psychometric properties of an instrument for the measurement of self-neglect (SN).Conceptual Framework: An elder self-neglect (ESN) conceptual framework guided the literature review and scale development. The framework has two key dimensions physical/psycho-social and environmental and seven sub dimensions which are representative of the factors that can contribute to intentional and unintentional SN. Methods: A descriptive cross-sectional design was adopted to achieve the research aim. The study was conducted in two phases. Phase 1 involved the development of the questionnaire content and structure. Phase 2 focused on establishing the psychometric properties of the instrument. Content validity was established by a panel of 8 experts and piloted with 9 health and social care professionals. The instrument was subsequently posted with a stamped addressed envelope to 566 health and social care professionals who met specific eligibility criteria across the four HSE areas. A total of 341 questionnaires were returned, a response rate of 60% and 305 (50%) completed responses were included in exploratory factor analysis (EFA). Item and factor analyses were performed to elicit the instruments underlying factor structure and establish preliminary construct validity. Findings: Item and factor analyses resulted in a logically coherent, 37 items, five factor solution, explaining 55.6% of the cumulative variance. The factors were labelled: ‘Environment’, ‘Social Networks’, ‘Emotional and Behavioural Liability’, ‘Health Avoidance’ and ‘Self-Determinism’. The factor loadings were >0.40 for all items on each of the five subscales. Preliminary construct validity was supported by findings. Conclusion: The main outcome of this research is a 37 item Self-Neglect (SN-37) measurement instrument that was developed by EFA and underpinned by an ESN conceptual framework. Preliminary psychometric evaluation of the instrument is promising. Future work should be directed at establishing the construct and criterion related validity of the instrument.
Resumo:
BACKGROUND: The obesity epidemic has spread to young adults, leading to significant public health implications later in adulthood. Intervention in early adulthood may be an effective public health strategy for reducing the long-term health impact of the epidemic. Few weight loss trials have been conducted in young adults. It is unclear what weight loss strategies are beneficial in this population. PURPOSE: To describe the design and rationale of the NHLBI-sponsored Cell Phone Intervention for You (CITY) study, which is a single center, randomized three-arm trial that compares the impact on weight loss of 1) a behavioral intervention that is delivered almost entirely via cell phone technology (Cell Phone group); and 2) a behavioral intervention delivered mainly through monthly personal coaching calls enhanced by self-monitoring via cell phone (Personal Coaching group), each compared to 3) a usual care, advice-only control condition. METHODS: A total of 365 community-dwelling overweight/obese adults aged 18-35 years were randomized to receive one of these three interventions for 24 months in parallel group design. Study personnel assessing outcomes were blinded to group assignment. The primary outcome is weight change at 24 [corrected] months. We hypothesize that each active intervention will cause more weight loss than the usual care condition. Study completion is anticipated in 2014. CONCLUSIONS: If effective, implementation of the CITY interventions could mitigate the alarming rates of obesity in young adults through promotion of weight loss. ClinicalTrial.gov: NCT01092364.
Resumo:
BACKGROUND/AIMS: The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. METHODS: Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. RESULTS: The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. CONCLUSION: The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves.
Resumo:
One thing is (a) to develop a system that handles some task to one's satisfaction, and also has a universally recognized myrthful side to its output. Another thing is (b) to provide an analysis of why you are getting such a byproduct. Yet another thing is (c) to develop a model that incorporates reflection about some phenomenon in humor for its own sake. This paper selects for discussion especially Alibi, going on to describe the preliminaries of Columbus. The former, which fits in (a), is a planner with an explanatory capability. It invents pretexts. It's no legal defense, but it is relevant to evidential thinking in AI & Law. Some of the output pretext are myrthful. Not in the sense they are silly: they are not. A key factor seems to be the very alacrity at explaining out detail after detail of globally damning evidence. I attempt a reanalysis of Alibi in respect of (b). As to Columbus, it fits instead in (c). We introduce here the basics of this (unimplemented) model, developed to account for a sample text in parody.
Resumo:
This paper presents an investigation into dynamic self-adjustment of task deployment and other aspects of self-management, through the embedding of multiple policies. Non-dedicated loosely-coupled computing environments, such as clusters and grids are increasingly popular platforms for parallel processing. These abundant systems are highly dynamic environments in which many sources of variability affect the run-time efficiency of tasks. The dynamism is exacerbated by the incorporation of mobile devices and wireless communication. This paper proposes an adaptive strategy for the flexible run-time deployment of tasks; to continuously maintain efficiency despite the environmental variability. The strategy centres on policy-based scheduling which is informed by contextual and environmental inputs such as variance in the round-trip communication time between a client and its workers and the effective processing performance of each worker. A self-management framework has been implemented for evaluation purposes. The framework integrates several policy-controlled, adaptive services with the application code, enabling the run-time behaviour to be adapted to contextual and environmental conditions. Using this framework, an exemplar self-managing parallel application is implemented and used to investigate the extent of the benefits of the strategy